charles/src/object.c

272 lines
5.8 KiB
C
Raw Normal View History

2013-09-07 16:09:19 -07:00
/* object.c
*
* Definition of scene Objects.
*
* Eryn Wells <eryn@erynwells.me>
*/
2013-09-07 16:48:50 -07:00
#include <assert.h>
2013-09-07 18:26:32 -07:00
#include <math.h>
2013-09-07 16:48:50 -07:00
#include <stdlib.h>
2013-09-07 22:22:27 -07:00
2013-09-07 16:48:50 -07:00
#include "basics.h"
2013-09-07 16:09:19 -07:00
#include "object.h"
2013-09-07 16:48:50 -07:00
struct _Object {
ObjectType type;
Vector3 location;
2013-09-07 22:22:27 -07:00
Texture *texture;
2013-09-07 16:48:50 -07:00
void *shape;
2013-09-07 18:26:32 -07:00
int (*does_intersect)(Object *obj, Ray ray, float **t);
2013-09-07 16:09:19 -07:00
};
2013-09-07 16:48:50 -07:00
2013-09-07 18:26:32 -07:00
2013-09-07 16:48:50 -07:00
typedef struct _Sphere {
float radius;
} Sphere;
2013-09-07 18:26:32 -07:00
static int sphere_does_intersect(Object *obj, Ray ray, float **t);
static int sphere_point_lies_on_surface(Object *obj, Vector3 p);
static Vector3 sphere_compute_normal(Object *obj, Vector3 p);
2013-09-07 18:26:32 -07:00
2013-09-07 16:48:50 -07:00
/*
* object_init ---
*
* Create a new object of the given type.
*/
Object *
object_init(ObjectType type)
{
Object *obj = malloc(sizeof(Object));
if (obj == NULL) {
return NULL;
}
2013-09-07 22:22:27 -07:00
obj->type = type;
obj->location = Vector3Zero;
2013-09-07 22:22:27 -07:00
obj->texture = NULL;
2013-09-07 16:48:50 -07:00
switch (type) {
2013-09-07 18:26:32 -07:00
case ObjectTypeSphere: {
Sphere *s = malloc(sizeof(Sphere));
if (s == NULL) {
// TODO: DANGER! WILL ROBINSON!
}
obj->shape = s;
s->radius = 0.0;
obj->does_intersect = sphere_does_intersect;
2013-09-07 16:48:50 -07:00
break;
2013-09-07 18:26:32 -07:00
}
2013-09-07 16:48:50 -07:00
default:
assert(0);
}
return obj;
}
/*
* object_destroy --
*
* Destroy the given object.
*/
void
object_destroy(Object *obj)
{
assert(obj != NULL);
assert(obj->shape != NULL);
free(obj->shape);
free(obj);
}
/*
* object_get_location --
* object_set_location --
*
* Get and set the location of the object.
*/
Vector3
object_get_location(Object *obj)
{
assert(obj != NULL);
return obj->location;
}
void
object_set_location(Object *obj, Vector3 location)
{
assert(obj != NULL);
obj->location = location;
}
2013-09-07 18:26:32 -07:00
2013-09-07 22:22:27 -07:00
/*
* object_get_texture --
* object_set_texture --
*
* Get and set the object's texture.
*/
Texture *
object_get_texture(Object *obj)
{
assert(obj != NULL);
return obj->texture;
}
void
object_set_texture(Object *obj, Texture *tex)
{
assert(obj != NULL);
obj->texture = tex;
}
2013-09-07 18:26:32 -07:00
/*
* object_does_intersect --
*
* Determine if a ray intersects with the object.
*/
int
object_does_intersect(Object *obj, Ray ray, float **t)
{
assert(obj != NULL && obj->does_intersect != NULL);
return obj->does_intersect(obj, ray, t);
}
2013-09-07 16:48:50 -07:00
/*
* Sphere functions
*/
/*
* object_sphere_get_radius --
* object_sphere_set_radius --
*
* Get and set the radius of a Sphere object.
*/
float
object_sphere_get_radius(Object *obj)
{
assert(obj != NULL && obj->type == ObjectTypeSphere);
return ((Sphere *)obj->shape)->radius;
}
void
object_sphere_set_radius(Object *obj, float r)
{
assert(obj != NULL && obj->type == ObjectTypeSphere);
((Sphere *)obj->shape)->radius = r;
}
2013-09-07 18:26:32 -07:00
/*
* sphere_does_intersect --
*
* Compute the intersection of a ray with the given object. The object must be a Sphere. All intersection t values are
* returned in the **t argument. The number of values returned therein is indicated by the return value. Memory is
* allocated at *t. It is the caller's responsibility to free it when it is no longer needed. If 0 is returned, no
* memory needs to be freed.
*/
int
sphere_does_intersect(Object *obj, Ray ray, float **t)
{
2013-09-08 18:28:53 -07:00
// Location of the vector in object space.
Vector3 ray_loc_obj = vector_sub_vector(ray.location, object_get_location(obj));
2013-09-07 18:26:32 -07:00
float r = object_sphere_get_radius(obj);
// Coefficients for quadratic equation.
float a = vector_dot(ray.direction, ray.direction);
2013-09-08 18:28:53 -07:00
float b = vector_dot(ray.direction, ray_loc_obj) * 2.0;
float c = vector_dot(ray_loc_obj, ray_loc_obj) - (r * r);
2013-09-07 18:26:32 -07:00
2013-09-08 18:28:53 -07:00
// Discriminant for the quadratic equation.
float discrim = (b * b) - (4.0 * a * c);
2013-09-07 18:26:32 -07:00
// If the discriminant is less than zero, there are no real (as in not imaginary) solutions to this intersection.
if (discrim < 0) {
return 0;
}
2013-09-08 18:28:53 -07:00
// Compute the intersections, the roots of the quadratic equation. Spheres have at most two intersections.
float sqrt_discrim = sqrtf(discrim);
float t0 = (-b - sqrt_discrim) / (2.0 * a);
float t1 = (-b + sqrt_discrim) / (2.0 * a);
2013-09-07 18:26:32 -07:00
// If t[1] is less than t[0], swap them (t[0] will always be the first intersection).
if (t1 < t0) {
float tmp = t0;
t0 = t1;
t1 = tmp;
}
/*
* If the farther intersection of the two is in the negative direction, the sphere is in the ray's negative
* direction.
*/
if (t1 < 0) {
return 0;
}
/*
* Allocate the memory and store the values. It's possible the two values are equal. Only allocate enough memory to
* store the required number of values.
*/
int nints = (t0 != t1) ? 2 : 1;
*t = malloc(sizeof(float) * nints);
if (*t == NULL) {
return 0;
}
(*t)[0] = t0;
if (nints > 1) {
(*t)[1] = t1;
}
return nints;
}
/*
* sphere_point_lies_on_surface --
*
* Determine if a point lies on the given sphere.
*/
int
sphere_point_lies_on_surface(Object *obj, Vector3 p)
{
assert(obj != NULL && obj->type == ObjectTypeSphere);
Vector3 loc = object_get_location(obj);
float x = p.x - loc.x;
float y = p.y - loc.y;
float z = p.z - loc.z;
float r = object_sphere_get_radius(obj);
return (x * x) + (y * y) + (z * z) == (r * r);
}
/*
* sphere_compute_normal --
*
* Compute the normal for the given Object (which must be a Sphere) at the given point. This point must lie on the
* surface of the object.
*/
/* static */ Vector3
sphere_compute_normal(Object *obj, Vector3 p)
{
assert(obj != NULL && obj->type == ObjectTypeSphere);
// Make sure the given point is actually on the surface of the sphere.
if (!sphere_point_lies_on_surface(obj, p)) {
return Vector3Zero;
}
// The fun thing about sphere is the normal to any point on the sphere is the point itself. Woo!
return p;
}