168 lines
3.1 KiB
C++
168 lines
3.1 KiB
C++
|
/* matrix.hh
|
||
|
* vim: set tw=80:
|
||
|
* Eryn Wells <eryn@erynwells.me>
|
||
|
*/
|
||
|
|
||
|
#ifndef __BASICS_MATRIX_HH__
|
||
|
#define __BASICS_MATRIX_HH__
|
||
|
|
||
|
#include <cassert>
|
||
|
#include <cstring>
|
||
|
#include <type_traits>
|
||
|
|
||
|
#include "basics/types.hh"
|
||
|
|
||
|
|
||
|
namespace charles {
|
||
|
namespace basics {
|
||
|
|
||
|
/**
|
||
|
* A generic, templated Matrix class taking two template parameters. `N` is the
|
||
|
* number of rows. `M` is the number of columns.
|
||
|
*/
|
||
|
template<uint N, uint M>
|
||
|
struct Matrix
|
||
|
{
|
||
|
/** Construct an N x M matrix of zeros. */
|
||
|
static Matrix<N,M> Zero();
|
||
|
|
||
|
/** Construct an N x M identity matrix. */
|
||
|
static Matrix<N,M> Identity();
|
||
|
|
||
|
/** Value accessor. Get the ij'th item. */
|
||
|
Double& operator(uint i, uint j);
|
||
|
|
||
|
/** Scalar multiplication */
|
||
|
Matrix<N,M> operator*(const Double& lhs) const;
|
||
|
|
||
|
/** Matrix multiplication */
|
||
|
template<uint P>
|
||
|
Matrix<N,P> operator*(Matrix<M,P> lhs) const;
|
||
|
|
||
|
const Double* CArray() const;
|
||
|
|
||
|
private:
|
||
|
/** The matrix data, stored in row-major format. */
|
||
|
Double mData[N * M];
|
||
|
};
|
||
|
|
||
|
|
||
|
/** Scalar multiplication, scalar factor on the left. */
|
||
|
template<uint N, uint M>
|
||
|
Matrix<N,M> operator*(const Double& lhs, const Matrix<N,M>& rhs);
|
||
|
|
||
|
|
||
|
/*
|
||
|
* charles::basics::Matrix<>::Zero --
|
||
|
*/
|
||
|
template<uint N, uint M>
|
||
|
Matrix<N,M>
|
||
|
Matrix<N,M>::Zero()
|
||
|
{
|
||
|
Matrix<N,M> m;
|
||
|
bzero(m.mData, sizeof(Double) * N * M);
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* charles::basics::Matrix<>::Identity --
|
||
|
*/
|
||
|
template<uint N, uint M>
|
||
|
Matrix<N,M>
|
||
|
Matrix<N,M>::Identity()
|
||
|
{
|
||
|
static_assert(N == M, "Identity matrices must be square.");
|
||
|
|
||
|
auto m = Matrix<N,M>::Zero();
|
||
|
for (int i = 0; i < N; i++) {
|
||
|
for (int j = 0; j < M; j++) {
|
||
|
if (i == j) {
|
||
|
m(i,j) = 1.0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* charles::basics::Matrix<>::operator() --
|
||
|
*/
|
||
|
template<uint N, uint M>
|
||
|
Double&
|
||
|
Matrix<N,M>::operator()(uint i, uint j)
|
||
|
{
|
||
|
assert(i < N && j < M);
|
||
|
return mData[i * N + j];
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* charles::basics::Matrix<>::operator* --
|
||
|
*/
|
||
|
template<uint N, uint M>
|
||
|
Matrix<N,M>
|
||
|
Matrix<N,M>::operator*(const Double& lhs)
|
||
|
const
|
||
|
{
|
||
|
Matrix<N,M> result;
|
||
|
for (int i = 0; i < N*M; i++) {
|
||
|
result.mData = mData[i] * lhs;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* charles::basics::Matrix<>::operator* --
|
||
|
*/
|
||
|
template<uint N, uint M>
|
||
|
template<uint P>
|
||
|
Matrix<N,P>
|
||
|
Matrix<N,M>::operator*(Matrix<M,P> lhs)
|
||
|
const
|
||
|
{
|
||
|
Matrix<N,P> result;
|
||
|
for (int i = 0; i < N; i++) {
|
||
|
for (int j = 0; j < P; j++) {
|
||
|
/* Each cell is Sigma(k=0, M)(lhs[ik] * rhs[kj]) */
|
||
|
const int ij = i*N + j;
|
||
|
mCells[ij] = 0.0;
|
||
|
for (int k = 0; k < M; k++) {
|
||
|
result.mCells[ij] += mCells[i*N + k] * rhs.mCells[k*P + j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* charles::basics::Matrix<>::CArray --
|
||
|
*/
|
||
|
template<uint N, uint M>
|
||
|
const Double*
|
||
|
Matrix<N,M>::CArray()
|
||
|
const
|
||
|
{
|
||
|
return mData;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* charles::basics::operator* --
|
||
|
*/
|
||
|
template<uint N, uint M>
|
||
|
Matrix<N,M>
|
||
|
operator*(const Double& lhs,
|
||
|
const Matrix<N,M>& rhs)
|
||
|
{
|
||
|
return rhs * lhs;
|
||
|
}
|
||
|
|
||
|
} /* namespace basics */
|
||
|
} /* namespace charles */
|
||
|
|
||
|
#endif /* __BASICS_MATRIX_HH__ */
|