Update Sphere to inherit from Object
- Had to do a couple updates here to adapt to the new code style... - Update DoesIntersect for code style and to pass back t values in the vector instead of the float array.
This commit is contained in:
parent
2036521f42
commit
19aeb7b14e
2 changed files with 51 additions and 50 deletions
|
@ -14,6 +14,7 @@
|
|||
#include "object.h"
|
||||
#include "object_sphere.h"
|
||||
|
||||
namespace charles {
|
||||
|
||||
/*
|
||||
* Sphere::Sphere --
|
||||
|
@ -36,7 +37,7 @@ Sphere::Sphere(float r)
|
|||
|
||||
|
||||
Sphere::Sphere(Vector3 o, float r)
|
||||
: Shape(o),
|
||||
: Object(o),
|
||||
radius(r)
|
||||
{ }
|
||||
|
||||
|
@ -61,69 +62,64 @@ Sphere::set_radius(float r)
|
|||
|
||||
|
||||
/*
|
||||
* Sphere::does_intersect --
|
||||
*
|
||||
* Compute the intersection of a ray with this Sphere. All intersection t values are returned in the **t argument. The
|
||||
* number of values returned therein is indicated by the return value. Memory is allocated at *t. It is the caller's
|
||||
* responsibility to free it when it is no longer needed. If 0 is returned, no memory needs to be freed.
|
||||
* Sphere::DoesIntersect --
|
||||
*/
|
||||
int
|
||||
Sphere::does_intersect(const Ray &ray, float **t)
|
||||
bool
|
||||
Sphere::DoesIntersect(const Ray& ray,
|
||||
TVector& t)
|
||||
const
|
||||
{
|
||||
// Origin of the vector in object space.
|
||||
Vector3 ray_origin_obj = ray.origin - get_origin();
|
||||
/* Origin of the vector in object space. */
|
||||
Vector3 rayOriginObj = ray.origin - GetOrigin();
|
||||
|
||||
// Coefficients for quadratic equation.
|
||||
float a = ray.direction.dot(ray.direction);
|
||||
float b = ray.direction.dot(ray_origin_obj) * 2.0;
|
||||
float c = ray_origin_obj.dot(ray_origin_obj) - (radius * radius);
|
||||
/* Coefficients for quadratic equation. */
|
||||
Double a = ray.direction.dot(ray.direction);
|
||||
Double b = ray.direction.dot(rayOriginObj) * 2.0;
|
||||
Double c = rayOriginObj.dot(rayOriginObj) - (radius * radius);
|
||||
|
||||
// Discriminant for the quadratic equation.
|
||||
float discrim = (b * b) - (4.0 * a * c);
|
||||
/* Discriminant for the quadratic equation. */
|
||||
Double discrim = (b * b) - (4.0 * a * c);
|
||||
|
||||
// If the discriminant is less than zero, there are no real (as in not imaginary) solutions to this intersection.
|
||||
/*
|
||||
* If the discriminant is less than zero, there are no real (as in not
|
||||
* imaginary) solutions to this intersection.
|
||||
*/
|
||||
if (discrim < 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Compute the intersections, the roots of the quadratic equation. Spheres have at most two intersections.
|
||||
float sqrt_discrim = sqrtf(discrim);
|
||||
float t0 = (-b - sqrt_discrim) / (2.0 * a);
|
||||
float t1 = (-b + sqrt_discrim) / (2.0 * a);
|
||||
|
||||
// If t[1] is less than t[0], swap them (t[0] will always be the first intersection).
|
||||
if (t1 < t0) {
|
||||
float tmp = t0;
|
||||
t0 = t1;
|
||||
t1 = tmp;
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
* If the farther intersection of the two is in the negative direction, the sphere is in the ray's negative
|
||||
* direction.
|
||||
* Compute the intersections, the roots of the quadratic equation. Spheres
|
||||
* have at most two intersections.
|
||||
*/
|
||||
Double sqrtDiscrim = sqrt(discrim);
|
||||
Double t0 = (-b - sqrtDiscrim) / (2.0 * a);
|
||||
Double t1 = (-b + sqrtDiscrim) / (2.0 * a);
|
||||
|
||||
/*
|
||||
* If the farther intersection of the two is in the negative direction, the
|
||||
* sphere is in the ray's negative direction.
|
||||
*/
|
||||
if (t1 < 0) {
|
||||
return 0;
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate the memory and store the values. It's possible the two values are equal. Only allocate enough memory to
|
||||
* store the required number of values.
|
||||
*/
|
||||
int nints = (t0 != t1) ? 2 : 1;
|
||||
if (t != NULL) {
|
||||
*t = new float[nints];
|
||||
if (*t == NULL) {
|
||||
return 0;
|
||||
if (t0 == t1) {
|
||||
t.push_back(t0);
|
||||
}
|
||||
else {
|
||||
/* Push these on in ascending order, nearest intersection to farthest. */
|
||||
if (t0 < t1) {
|
||||
t.push_back(t0);
|
||||
t.push_back(t1);
|
||||
}
|
||||
(*t)[0] = t0;
|
||||
if (nints > 1) {
|
||||
(*t)[1] = t1;
|
||||
else {
|
||||
t.push_back(t1);
|
||||
t.push_back(t0);
|
||||
}
|
||||
}
|
||||
|
||||
return nints;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
@ -136,7 +132,7 @@ bool
|
|||
Sphere::point_is_on_surface(const Vector3 &p)
|
||||
const
|
||||
{
|
||||
Vector3 o = get_origin();
|
||||
Vector3 o = GetOrigin();
|
||||
float x = p.x - o.x;
|
||||
float y = p.y - o.y;
|
||||
float z = p.z - o.z;
|
||||
|
@ -156,7 +152,9 @@ Sphere::compute_normal(const Vector3 &p)
|
|||
const
|
||||
{
|
||||
// The fun thing about sphere is the normal to any point on the sphere is the point itself. Woo!
|
||||
Vector3 normal = p - get_origin();
|
||||
Vector3 normal = p - GetOrigin();
|
||||
normal.normalize();
|
||||
return normal;
|
||||
}
|
||||
|
||||
} /* namespace charles */
|
||||
|
|
|
@ -11,9 +11,10 @@
|
|||
#include "basics.h"
|
||||
#include "object.h"
|
||||
|
||||
namespace charles {
|
||||
|
||||
class Sphere
|
||||
: public Shape
|
||||
: public Object
|
||||
{
|
||||
public:
|
||||
Sphere();
|
||||
|
@ -23,11 +24,13 @@ public:
|
|||
float get_radius();
|
||||
void set_radius(float r);
|
||||
|
||||
int does_intersect(const Ray &ray, float **t) const;
|
||||
bool DoesIntersect(const Ray& ray, TVector& t) const;
|
||||
bool point_is_on_surface(const Vector3 &p) const;
|
||||
Vector3 compute_normal(const Vector3 &p) const;
|
||||
private:
|
||||
float radius;
|
||||
};
|
||||
|
||||
} /* namespace charles */
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue