Move Sphere::does_intersect to object_sphere; fill out object_sphere in C++

This commit is contained in:
Eryn Wells 2013-09-10 09:33:59 -07:00
parent a02e31952e
commit 2d66ba0945
2 changed files with 187 additions and 22 deletions

View file

@ -6,9 +6,9 @@
*/
#include <assert.h>
#include <math.h>
#include <stdlib.h>
#include <cassert>
#include <cmath>
#include <cstdlib>
#include "basics.h"
#include "object.h"
@ -48,24 +48,22 @@ Object::set_origin(Vector3 v)
}
/*
* sphere_does_intersect --
* Sphere::does_intersect --
*
* Compute the intersection of a ray with the given object. The object must be a Sphere. All intersection t values are
* returned in the **t argument. The number of values returned therein is indicated by the return value. Memory is
* allocated at *t. It is the caller's responsibility to free it when it is no longer needed. If 0 is returned, no
* memory needs to be freed.
* Compute the intersection of a ray with this Sphere. All intersection t values are returned in the **t argument. The
* number of values returned therein is indicated by the return value. Memory is allocated at *t. It is the caller's
* responsibility to free it when it is no longer needed. If 0 is returned, no memory needs to be freed.
*/
int
sphere_does_intersect(Object *obj, Ray ray, float **t)
Sphere::does_intersect(const Ray &ray, float **t)
{
// Location of the vector in object space.
Vector3 ray_loc_obj = vector_sub_vector(ray.location, object_get_location(obj));
float r = object_sphere_get_radius(obj);
// Origin of the vector in object space.
Vector3 ray_origin_obj = ray.origin - get_origin();
// Coefficients for quadratic equation.
float a = vector_dot(ray.direction, ray.direction);
float b = vector_dot(ray.direction, ray_loc_obj) * 2.0;
float c = vector_dot(ray_loc_obj, ray_loc_obj) - (r * r);
float a = ray.direction.dot(ray.direction);
float b = ray.direction.dot(ray_origin_obj) * 2.0;
float c = ray_origin_obj.dot(ray_origin_obj) - (radius * radius);
// Discriminant for the quadratic equation.
float discrim = (b * b) - (4.0 * a * c);
@ -100,13 +98,15 @@ sphere_does_intersect(Object *obj, Ray ray, float **t)
* store the required number of values.
*/
int nints = (t0 != t1) ? 2 : 1;
*t = malloc(sizeof(float) * nints);
if (*t == NULL) {
return 0;
}
(*t)[0] = t0;
if (nints > 1) {
(*t)[1] = t1;
if (t != NULL) {
*t = malloc(sizeof(float) * nints);
if (*t == NULL) {
return 0;
}
(*t)[0] = t0;
if (nints > 1) {
(*t)[1] = t1;
}
}
return nints;

165
src/object_sphere.cc Normal file
View file

@ -0,0 +1,165 @@
/* object_sphere.h
*
* Spheres are Scene objects defined by a center point and a radius.
*
* Eryn Wells <eryn@erynwells.me>
*/
#include <assert.h>
#include <math.h>
#include <stdlib.h>
#include "object.h"
#include "object_sphere.h"
/*
* Sphere::Sphere --
*
* Default constructor. Create a Sphere with radius 1.0.
*/
Sphere::Sphere()
: Sphere(1.0)
{ }
/*
* Sphere::Sphere --
*
* Constructor. Create a Sphere with the given radius.
*/
Sphere::Sphere(float r)
: Sphere(Vector3::Zero, r)
{ }
Sphere::Sphere(Vector3 o, float r)
: Object(o),
float(r)
{ }
/*
* Sphere::get_radius --
* Sphere::set_radius --
*
* Get and set the radius of this Sphere.
*/
float
Sphere::get_radius()
{
return radius;
}
void
Sphere::set_radius(float r)
{
radius = (radius >= 0.0) ? r : -r;
}
/*
* Sphere::does_intersect --
*
* Compute the intersection of a ray with this Sphere. All intersection t values are returned in the **t argument. The
* number of values returned therein is indicated by the return value. Memory is allocated at *t. It is the caller's
* responsibility to free it when it is no longer needed. If 0 is returned, no memory needs to be freed.
*/
int
Sphere::does_intersect(const Ray &ray, float **t)
{
// Origin of the vector in object space.
Vector3 ray_origin_obj = ray.origin - get_origin();
// Coefficients for quadratic equation.
float a = ray.direction.dot(ray.direction);
float b = ray.direction.dot(ray_origin_obj) * 2.0;
float c = ray_origin_obj.dot(ray_origin_obj) - (radius * radius);
// Discriminant for the quadratic equation.
float discrim = (b * b) - (4.0 * a * c);
// If the discriminant is less than zero, there are no real (as in not imaginary) solutions to this intersection.
if (discrim < 0) {
return 0;
}
// Compute the intersections, the roots of the quadratic equation. Spheres have at most two intersections.
float sqrt_discrim = sqrtf(discrim);
float t0 = (-b - sqrt_discrim) / (2.0 * a);
float t1 = (-b + sqrt_discrim) / (2.0 * a);
// If t[1] is less than t[0], swap them (t[0] will always be the first intersection).
if (t1 < t0) {
float tmp = t0;
t0 = t1;
t1 = tmp;
}
/*
* If the farther intersection of the two is in the negative direction, the sphere is in the ray's negative
* direction.
*/
if (t1 < 0) {
return 0;
}
/*
* Allocate the memory and store the values. It's possible the two values are equal. Only allocate enough memory to
* store the required number of values.
*/
int nints = (t0 != t1) ? 2 : 1;
if (t != NULL) {
*t = malloc(sizeof(float) * nints);
if (*t == NULL) {
return 0;
}
(*t)[0] = t0;
if (nints > 1) {
(*t)[1] = t1;
}
}
return nints;
}
/*
* sphere_point_lies_on_surface --
*
* Determine if a point lies on the given sphere.
*/
int
sphere_point_lies_on_surface(Object *obj, Vector3 p)
{
assert(obj != NULL && object_get_type(obj) == ObjectTypeSphere);
Vector3 loc = object_get_location(obj);
float x = p.x - loc.x;
float y = p.y - loc.y;
float z = p.z - loc.z;
float r = object_sphere_get_radius(obj);
return (x * x) + (y * y) + (z * z) == (r * r);
}
/*
* sphere_compute_normal --
*
* Compute the normal for the given Object (which must be a Sphere) at the given point. This point must lie on the
* surface of the object.
*/
/* static */ Vector3
sphere_compute_normal(Object *obj, Vector3 p)
{
assert(obj != NULL && object_get_type(obj) == ObjectTypeSphere);
// Make sure the given point is actually on the surface of the sphere.
if (!sphere_point_lies_on_surface(obj, p)) {
return Vector3Zero;
}
// The fun thing about sphere is the normal to any point on the sphere is the point itself. Woo!
return p;
}