Move Sphere::does_intersect to object_sphere; fill out object_sphere in C++
This commit is contained in:
parent
a02e31952e
commit
2d66ba0945
2 changed files with 187 additions and 22 deletions
|
@ -6,9 +6,9 @@
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
|
||||||
#include <assert.h>
|
#include <cassert>
|
||||||
#include <math.h>
|
#include <cmath>
|
||||||
#include <stdlib.h>
|
#include <cstdlib>
|
||||||
|
|
||||||
#include "basics.h"
|
#include "basics.h"
|
||||||
#include "object.h"
|
#include "object.h"
|
||||||
|
@ -48,24 +48,22 @@ Object::set_origin(Vector3 v)
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* sphere_does_intersect --
|
* Sphere::does_intersect --
|
||||||
*
|
*
|
||||||
* Compute the intersection of a ray with the given object. The object must be a Sphere. All intersection t values are
|
* Compute the intersection of a ray with this Sphere. All intersection t values are returned in the **t argument. The
|
||||||
* returned in the **t argument. The number of values returned therein is indicated by the return value. Memory is
|
* number of values returned therein is indicated by the return value. Memory is allocated at *t. It is the caller's
|
||||||
* allocated at *t. It is the caller's responsibility to free it when it is no longer needed. If 0 is returned, no
|
* responsibility to free it when it is no longer needed. If 0 is returned, no memory needs to be freed.
|
||||||
* memory needs to be freed.
|
|
||||||
*/
|
*/
|
||||||
int
|
int
|
||||||
sphere_does_intersect(Object *obj, Ray ray, float **t)
|
Sphere::does_intersect(const Ray &ray, float **t)
|
||||||
{
|
{
|
||||||
// Location of the vector in object space.
|
// Origin of the vector in object space.
|
||||||
Vector3 ray_loc_obj = vector_sub_vector(ray.location, object_get_location(obj));
|
Vector3 ray_origin_obj = ray.origin - get_origin();
|
||||||
float r = object_sphere_get_radius(obj);
|
|
||||||
|
|
||||||
// Coefficients for quadratic equation.
|
// Coefficients for quadratic equation.
|
||||||
float a = vector_dot(ray.direction, ray.direction);
|
float a = ray.direction.dot(ray.direction);
|
||||||
float b = vector_dot(ray.direction, ray_loc_obj) * 2.0;
|
float b = ray.direction.dot(ray_origin_obj) * 2.0;
|
||||||
float c = vector_dot(ray_loc_obj, ray_loc_obj) - (r * r);
|
float c = ray_origin_obj.dot(ray_origin_obj) - (radius * radius);
|
||||||
|
|
||||||
// Discriminant for the quadratic equation.
|
// Discriminant for the quadratic equation.
|
||||||
float discrim = (b * b) - (4.0 * a * c);
|
float discrim = (b * b) - (4.0 * a * c);
|
||||||
|
@ -100,6 +98,7 @@ sphere_does_intersect(Object *obj, Ray ray, float **t)
|
||||||
* store the required number of values.
|
* store the required number of values.
|
||||||
*/
|
*/
|
||||||
int nints = (t0 != t1) ? 2 : 1;
|
int nints = (t0 != t1) ? 2 : 1;
|
||||||
|
if (t != NULL) {
|
||||||
*t = malloc(sizeof(float) * nints);
|
*t = malloc(sizeof(float) * nints);
|
||||||
if (*t == NULL) {
|
if (*t == NULL) {
|
||||||
return 0;
|
return 0;
|
||||||
|
@ -108,6 +107,7 @@ sphere_does_intersect(Object *obj, Ray ray, float **t)
|
||||||
if (nints > 1) {
|
if (nints > 1) {
|
||||||
(*t)[1] = t1;
|
(*t)[1] = t1;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
return nints;
|
return nints;
|
||||||
}
|
}
|
||||||
|
|
165
src/object_sphere.cc
Normal file
165
src/object_sphere.cc
Normal file
|
@ -0,0 +1,165 @@
|
||||||
|
/* object_sphere.h
|
||||||
|
*
|
||||||
|
* Spheres are Scene objects defined by a center point and a radius.
|
||||||
|
*
|
||||||
|
* Eryn Wells <eryn@erynwells.me>
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <assert.h>
|
||||||
|
#include <math.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
|
||||||
|
#include "object.h"
|
||||||
|
#include "object_sphere.h"
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Sphere::Sphere --
|
||||||
|
*
|
||||||
|
* Default constructor. Create a Sphere with radius 1.0.
|
||||||
|
*/
|
||||||
|
Sphere::Sphere()
|
||||||
|
: Sphere(1.0)
|
||||||
|
{ }
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Sphere::Sphere --
|
||||||
|
*
|
||||||
|
* Constructor. Create a Sphere with the given radius.
|
||||||
|
*/
|
||||||
|
Sphere::Sphere(float r)
|
||||||
|
: Sphere(Vector3::Zero, r)
|
||||||
|
{ }
|
||||||
|
|
||||||
|
|
||||||
|
Sphere::Sphere(Vector3 o, float r)
|
||||||
|
: Object(o),
|
||||||
|
float(r)
|
||||||
|
{ }
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Sphere::get_radius --
|
||||||
|
* Sphere::set_radius --
|
||||||
|
*
|
||||||
|
* Get and set the radius of this Sphere.
|
||||||
|
*/
|
||||||
|
float
|
||||||
|
Sphere::get_radius()
|
||||||
|
{
|
||||||
|
return radius;
|
||||||
|
}
|
||||||
|
|
||||||
|
void
|
||||||
|
Sphere::set_radius(float r)
|
||||||
|
{
|
||||||
|
radius = (radius >= 0.0) ? r : -r;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Sphere::does_intersect --
|
||||||
|
*
|
||||||
|
* Compute the intersection of a ray with this Sphere. All intersection t values are returned in the **t argument. The
|
||||||
|
* number of values returned therein is indicated by the return value. Memory is allocated at *t. It is the caller's
|
||||||
|
* responsibility to free it when it is no longer needed. If 0 is returned, no memory needs to be freed.
|
||||||
|
*/
|
||||||
|
int
|
||||||
|
Sphere::does_intersect(const Ray &ray, float **t)
|
||||||
|
{
|
||||||
|
// Origin of the vector in object space.
|
||||||
|
Vector3 ray_origin_obj = ray.origin - get_origin();
|
||||||
|
|
||||||
|
// Coefficients for quadratic equation.
|
||||||
|
float a = ray.direction.dot(ray.direction);
|
||||||
|
float b = ray.direction.dot(ray_origin_obj) * 2.0;
|
||||||
|
float c = ray_origin_obj.dot(ray_origin_obj) - (radius * radius);
|
||||||
|
|
||||||
|
// Discriminant for the quadratic equation.
|
||||||
|
float discrim = (b * b) - (4.0 * a * c);
|
||||||
|
|
||||||
|
// If the discriminant is less than zero, there are no real (as in not imaginary) solutions to this intersection.
|
||||||
|
if (discrim < 0) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compute the intersections, the roots of the quadratic equation. Spheres have at most two intersections.
|
||||||
|
float sqrt_discrim = sqrtf(discrim);
|
||||||
|
float t0 = (-b - sqrt_discrim) / (2.0 * a);
|
||||||
|
float t1 = (-b + sqrt_discrim) / (2.0 * a);
|
||||||
|
|
||||||
|
// If t[1] is less than t[0], swap them (t[0] will always be the first intersection).
|
||||||
|
if (t1 < t0) {
|
||||||
|
float tmp = t0;
|
||||||
|
t0 = t1;
|
||||||
|
t1 = tmp;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* If the farther intersection of the two is in the negative direction, the sphere is in the ray's negative
|
||||||
|
* direction.
|
||||||
|
*/
|
||||||
|
if (t1 < 0) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Allocate the memory and store the values. It's possible the two values are equal. Only allocate enough memory to
|
||||||
|
* store the required number of values.
|
||||||
|
*/
|
||||||
|
int nints = (t0 != t1) ? 2 : 1;
|
||||||
|
if (t != NULL) {
|
||||||
|
*t = malloc(sizeof(float) * nints);
|
||||||
|
if (*t == NULL) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
(*t)[0] = t0;
|
||||||
|
if (nints > 1) {
|
||||||
|
(*t)[1] = t1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return nints;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* sphere_point_lies_on_surface --
|
||||||
|
*
|
||||||
|
* Determine if a point lies on the given sphere.
|
||||||
|
*/
|
||||||
|
int
|
||||||
|
sphere_point_lies_on_surface(Object *obj, Vector3 p)
|
||||||
|
{
|
||||||
|
assert(obj != NULL && object_get_type(obj) == ObjectTypeSphere);
|
||||||
|
|
||||||
|
Vector3 loc = object_get_location(obj);
|
||||||
|
float x = p.x - loc.x;
|
||||||
|
float y = p.y - loc.y;
|
||||||
|
float z = p.z - loc.z;
|
||||||
|
float r = object_sphere_get_radius(obj);
|
||||||
|
|
||||||
|
return (x * x) + (y * y) + (z * z) == (r * r);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* sphere_compute_normal --
|
||||||
|
*
|
||||||
|
* Compute the normal for the given Object (which must be a Sphere) at the given point. This point must lie on the
|
||||||
|
* surface of the object.
|
||||||
|
*/
|
||||||
|
/* static */ Vector3
|
||||||
|
sphere_compute_normal(Object *obj, Vector3 p)
|
||||||
|
{
|
||||||
|
assert(obj != NULL && object_get_type(obj) == ObjectTypeSphere);
|
||||||
|
|
||||||
|
// Make sure the given point is actually on the surface of the sphere.
|
||||||
|
if (!sphere_point_lies_on_surface(obj, p)) {
|
||||||
|
return Vector3Zero;
|
||||||
|
}
|
||||||
|
|
||||||
|
// The fun thing about sphere is the normal to any point on the sphere is the point itself. Woo!
|
||||||
|
return p;
|
||||||
|
}
|
Loading…
Add table
Add a link
Reference in a new issue