Add Planes
This commit is contained in:
parent
5d14a63c37
commit
2ea0589b44
2 changed files with 185 additions and 0 deletions
154
src/object_plane.cc
Normal file
154
src/object_plane.cc
Normal file
|
@ -0,0 +1,154 @@
|
|||
/* object_plane.h
|
||||
*
|
||||
* Planes are Shapes defined by a point and two direction vectors.
|
||||
*
|
||||
* Eryn Wells <eryn@erynwells.me>
|
||||
*/
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <cstdio>
|
||||
|
||||
#include "basics.h"
|
||||
#include "object.h"
|
||||
#include "object_plane.h"
|
||||
|
||||
|
||||
/*
|
||||
* Plane::Plane --
|
||||
*
|
||||
* Default constructor. Create a Plane with a point at the origin and normal vector in the Y direction.
|
||||
*/
|
||||
Plane::Plane()
|
||||
: Plane(Vector3::Y)
|
||||
{ }
|
||||
|
||||
|
||||
/*
|
||||
* Plane::Plane --
|
||||
*
|
||||
* Constructor. Create a Plane with a point at the origin, and a given normal.
|
||||
*/
|
||||
Plane::Plane(Vector3 n)
|
||||
: Plane(Vector3::Zero, n)
|
||||
{ }
|
||||
|
||||
|
||||
/*
|
||||
* Plane::Plane --
|
||||
*
|
||||
* Constructor. Create a Plane with the given origin and normal vectors.
|
||||
*/
|
||||
Plane::Plane(Vector3 o, Vector3 n)
|
||||
: Shape(o),
|
||||
normal(n.normalize())
|
||||
{ }
|
||||
|
||||
|
||||
/*
|
||||
* Plane::does_intersect --
|
||||
*
|
||||
* Compute the intersection of a ray with this Plane. All intersection t values are returned in the **t argument. The
|
||||
* number of values returned therein is indicated by the return value. Memory is allocated at *t. It is the caller's
|
||||
* responsibility to free it when it is no longer needed. If 0 is returned, no memory needs to be freed.
|
||||
*/
|
||||
int
|
||||
Plane::does_intersect(const Ray &ray, float **t)
|
||||
const
|
||||
{
|
||||
/*
|
||||
* The algebraic form of a plane is the following:
|
||||
*
|
||||
* (p - p0) . n = 0
|
||||
*
|
||||
* where p is a point in the plane, p0 is another point in the plane (the origin point in our case), and n is the
|
||||
* normal vector. (Periods [.] indicate dot products.) We can plug in the parametric equation for a Ray and solve
|
||||
* for t to get the intersection point.
|
||||
*
|
||||
* ((ro + t*rd) - p0) . n = 0
|
||||
*
|
||||
* Simplifying, distributing, and solving for t:
|
||||
*
|
||||
* t = ((p0 - ro) . n) / (ld . n)
|
||||
*
|
||||
* Note that if the denominator is 0, the ray runs parallel to the plane and there are no intersections. If both the
|
||||
* numerator and denominator are 0, the ray is in the plane and intersects everywhere.
|
||||
*
|
||||
* See: http://en.wikipedia.org/wiki/Line-plane_intersection
|
||||
*/
|
||||
Vector3 o = get_origin();
|
||||
int nints = 1;
|
||||
float numer = (o - ray.origin).dot(normal);
|
||||
float denom = ray.direction.dot(normal);
|
||||
|
||||
if (denom == 0.0) {
|
||||
nints = 0;
|
||||
if (numer == 0.0) {
|
||||
// Ray is in plane.
|
||||
nints = 1;
|
||||
}
|
||||
}
|
||||
|
||||
// No intersections.
|
||||
if (nints == 0) {
|
||||
return nints;
|
||||
}
|
||||
|
||||
float t0 = numer / denom;
|
||||
|
||||
// If the t value is negative, it's "behind" the origin of the ray, which we don't care about.
|
||||
if (t0 < 0.0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Allocate memory, at most one float.
|
||||
if (t != NULL) {
|
||||
*t = new float(t0);
|
||||
}
|
||||
|
||||
return nints;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Plane::point_is_on_surface --
|
||||
*
|
||||
* Determine if a point lies on the surface of this Sphere.
|
||||
*/
|
||||
bool
|
||||
Plane::point_is_on_surface(const Vector3 &p)
|
||||
const
|
||||
{
|
||||
/*
|
||||
* Plug point p into the equation for a plane:
|
||||
*
|
||||
* a(x - ox) + b(y - oy) + c(z - oz) = 0
|
||||
*
|
||||
* where (a, b, c) are the coordinates of the normal vector, and (ox, oy, oz) are the coordinates of the origin
|
||||
* vector.
|
||||
*
|
||||
* I found this page most helpful:
|
||||
* http://www.math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/lineplane/lineplane.html
|
||||
*/
|
||||
Vector3 o = get_origin();
|
||||
float x = normal.x * (p.x - o.x);
|
||||
float y = normal.y * (p.y - o.y);
|
||||
float z = normal.z * (p.z - o.z);
|
||||
return (x + y + z) == 0.0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Plane::compute_normal --
|
||||
*
|
||||
* Compute the normal for this Plane at the given point. If the point does not lie on the surface of the plane, a zero
|
||||
* vector is returned.
|
||||
*/
|
||||
Vector3
|
||||
Plane::compute_normal(const Vector3 &p)
|
||||
const
|
||||
{
|
||||
// This one's easy since planes are defined by their normals. :)
|
||||
return normal;
|
||||
}
|
31
src/object_plane.h
Normal file
31
src/object_plane.h
Normal file
|
@ -0,0 +1,31 @@
|
|||
/* object_plane.h
|
||||
*
|
||||
* Planes are Shapes defined by a point and two direction vectors.
|
||||
*
|
||||
* Eryn Wells <eryn@erynwells.me>
|
||||
*/
|
||||
|
||||
#ifndef __OBJECT_PLANE_H__
|
||||
#define __OBJECT_PLANE_H__
|
||||
|
||||
#include "basics.h"
|
||||
#include "object.h"
|
||||
|
||||
|
||||
class Plane
|
||||
: public Shape
|
||||
{
|
||||
public:
|
||||
Plane();
|
||||
Plane(Vector3 normal);
|
||||
Plane(Vector3 o, Vector3 normal);
|
||||
|
||||
int does_intersect(const Ray &ray, float **t) const;
|
||||
bool point_is_on_surface(const Vector3 &p) const;
|
||||
Vector3 compute_normal(const Vector3 &p) const;
|
||||
|
||||
private:
|
||||
Vector3 normal;
|
||||
};
|
||||
|
||||
#endif
|
Loading…
Add table
Add a link
Reference in a new issue