Implement a Matrix4 class

A 4x4 matrix that implements matrix multiplication and multiplication by
scalars. Some unit tests too, to test that this stuff works.
This commit is contained in:
Eryn Wells 2014-08-06 21:51:28 -07:00
parent c380a3c3cd
commit a955106d18
3 changed files with 402 additions and 0 deletions

View file

@ -9,7 +9,10 @@
* Eryn Wells <eryn@erynwells.me>
*/
#include <cassert>
#include <cmath>
#include <cstring>
#include "basics.h"
#pragma mark - Vectors
@ -271,6 +274,221 @@ LinearCombination(const Double k1, const Vector3& v1,
k1 * v1.z + k2 * v2.z + k3 * v3.z);
}
#pragma mark - Matrices
/* static */ Matrix4
Matrix4::Zero()
{
Matrix4 m;
memset(m.mCells, 0, 16 * sizeof(Double));
return m;
}
/* static */ Matrix4
Matrix4::Identity()
{
Matrix4 m = Zero();
for (int i = 0; i < 4; i++) {
m.mCells[i * 4 + i] = 1.0;
}
return m;
}
/* static */ Matrix4
Matrix4::Translation(Double x,
Double y,
Double z)
{
Matrix4 m = Identity();
m.mCells[3] = x;
m.mCells[7] = y;
m.mCells[11] = z;
return m;
}
/* static */ Matrix4
Matrix4::Rotation(Double x,
Double y,
Double z)
{
Matrix4 m = Identity();
if (x == 0.0 && y == 0.0 && z == 0.0) {
/* No rotation, just return the identity matrix. */
} else if (x != 0.0 && y == 0.0 && z == 0.0) {
/*
* Fill in m with values for an X rotation matrix.
*
* [1 0 0 0]
* [0 cos(x) -sin(x) 0]
* [0 sin(x) cos(x) 0]
* [0 0 0 1]
*/
Double cosX = std::cos(x);
Double sinX = std::sin(x);
m.mCells[5] = cosX;
m.mCells[6] = -sinX;
m.mCells[9] = sinX;
m.mCells[10] = cosX;
} else if (x == 0.0 && y != 0.0 && z == 0.0) {
/*
* Fill in m with values for a Y rotation matrix.
*
* [ cos(y) 0 sin(y) 0]
* [ 0 1 0 0]
* [-sin(y) 0 cos(y) 0]
* [ 0 0 0 1]
*/
Double cosY = std::cos(y);
Double sinY = std::sin(y);
m.mCells[0] = cosY;
m.mCells[2] = sinY;
m.mCells[8] = -sinY;
m.mCells[10] = cosY;
} else if (x == 0.0 && y == 0.0 && z != 0.0) {
/*
* Fill in m with values for a Z rotation matrix.
*
* [cos(z) -sin(z) 0 0]
* [sin(z) cos(z) 0 0]
* [ 0 0 1 0]
* [ 0 0 0 1]
*/
Double cosZ = std::cos(z);
Double sinZ = std::sin(z);
m.mCells[0] = cosZ;
m.mCells[1] = -sinZ;
m.mCells[4] = sinZ;
m.mCells[5] = cosZ;
} else {
/*
* TODO: Rotation in more than one dimension. So do a general rotation
* matrix. There's some magic way to do this with matrix multiplication
* that avoids gimbal lock. I should figure out how to do it properly.
*/
assert(0);
}
return m;
}
/*
* Matrix4::Matrix4 --
*/
Matrix4::Matrix4()
: mCells()
{ }
/*
* Matrix4::Matrix4 --
*/
Matrix4::Matrix4(const Double cells[16])
: mCells()
{
memcpy(mCells, cells, 16 * sizeof(Double));
}
/*
* Matrix4::Matrix4 --
*/
Matrix4::Matrix4(const Matrix4& rhs)
: Matrix4(rhs.mCells)
{ }
/*
* Matrix4::operator() --
*/
Double&
Matrix4::operator()(const unsigned int row,
const unsigned int col)
{
assert(row < 4 && col < 4);
return mCells[4*row + col];
}
/*
* Matrix4::operator* --
*/
Matrix4
Matrix4::operator*(const Double rhs)
const
{
return Matrix4(*this) *= rhs;
}
/*
* Matrix4::operator*= --
*/
Matrix4&
Matrix4::operator*=(const Double rhs)
{
for (int i = 0; i < 16; i++) {
mCells[i] *= rhs;
}
return *this;
}
/*
* Matrix4::operator* --
*/
Matrix4
Matrix4::operator*(const Matrix4& rhs)
const
{
return Matrix4(*this) *= rhs;
}
/*
* Matrix4::operator*=
*/
Matrix4&
Matrix4::operator*=(const Matrix4& rhs)
{
Matrix4 lhs(*this);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
/* Each cell is Sigma(k=0, 4)(lhs[ik] * rhs[kj]) */
const int cell = i*4 + j;
mCells[cell] = 0.0;
for (int k = 0; k < 4; k++) {
mCells[cell] += lhs.mCells[i*4 + k] * rhs.mCells[k*4 + j];
}
}
}
return *this;
}
/*
* Matrix4::CArray --
*/
const Double*
Matrix4::CArray()
const
{
return mCells;
}
Matrix4
operator*(const Double rhs,
const Matrix4& lhs)
{
/* Scalar multiplication is commutative. */
return lhs * rhs;
}
#pragma mark - Rays
/*

View file

@ -119,6 +119,81 @@ Vector3 LinearCombination(const Double k1, const Vector3& v1,
const Double k3, const Vector3& v3);
struct Matrix4
{
/** Create a 4x4 zero matrix. That is, all cells are 0. */
static Matrix4 Zero();
/** Create a 4x4 identity matrix. */
static Matrix4 Identity();
Matrix4();
Matrix4(const Double cells[16]);
Matrix4(const Matrix4& rhs);
/**
* Create a 4x4 translation matrix. A translation matrix looks like this:
*
* [1 0 0 x]
* [0 1 0 y]
* [0 0 1 z]
* [0 0 0 1]
*
* @param [in] x X translation
* @param [in] y Y translation
* @param [in] z Z translation
* @returns The translation matrix
*/
static Matrix4 Translation(Double x, Double y, Double z);
/**
* Create a 4x4 rotation matrix. A rotation matrices are quite complicated.
*
* @param [in] x X rotation angle in radians
* @param [in] y Y rotation angle in radians
* @param [in] z Z rotation angle in radians
* @returns The rotation matrix
*/
static Matrix4 Rotation(Double x, Double y, Double z);
/**
* Get the value of the cell at (row, col).
*
* @param [in] row The row, must be less than the matrix's width
* @param [in] col The column, must be less than the matrix's height
* @returns The value of the cell at (row, col)
*/
Double& operator()(const unsigned int row, const unsigned int col);
/**
* Scalar multiplication.
*
* @param [in] rhs The scalar factor
* @returns A copy of this matrix, multiplied by the scalar
*/
Matrix4 operator*(const Double rhs) const;
/**
* Scalar multiplication. Multiplies this matrix by the given factor.
*
* @param [in] rhs The scalar factor
* @returns *this
*/
Matrix4& operator*=(const Double rhs);
Matrix4 operator*(const Matrix4& rhs) const;
Matrix4& operator*=(const Matrix4& rhs);
const Double* CArray() const;
private:
Double mCells[16];
};
Matrix4 operator*(const Double lhs, const Matrix4& rhs);
struct Ray
{
Ray();

View file

@ -162,3 +162,112 @@ TEST_F(Vector3Test, DotProduct)
{
EXPECT_EQ(131.0, v1.dot(v2));
}
#pragma mark Matrix4 Tests
class Matrix4Test
: public ::testing::Test
{
public:
virtual void SetUp();
protected:
Matrix4 m1, m2;
};
void
Matrix4Test::SetUp()
{
const Double m1Cells[] = { 1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16};
m1 = Matrix4(m1Cells);
const Double m2Cells[] = { 1, 1, 2, 3,
5, 8, 13, 21,
34, 55, 89, 144,
233, 377, 610, 987};
m2 = Matrix4(m2Cells);
}
TEST(Matrix4StaticTest, Zero)
{
Matrix4 zero = Matrix4::Zero();
for (int i = 0; i < 16; i++) {
EXPECT_EQ(zero.CArray()[i], 0.0);
}
}
TEST(Matrix4StaticTest, Identity)
{
Matrix4 id = Matrix4::Identity();
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
EXPECT_EQ(id.CArray()[i * 4 + j], ((i == j) ? 1.0 : 0.0));
}
}
}
TEST_F(Matrix4Test, OperatorCall)
{
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
EXPECT_EQ(m1(i, j), 4 * i + j + 1);
}
}
}
TEST_F(Matrix4Test, ScalarMultiplication)
{
Matrix4 p1 = m1 * 2.0;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
EXPECT_EQ(p1(i, j), m1(i, j) * 2.0);
}
}
Matrix4 p2 = 2.0 * m1;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
EXPECT_EQ(p2(i, j), m1(i, j) * 2.0);
}
}
}
TEST_F(Matrix4Test, MatrixMultiplication)
{
const Double p1Expect[] = {1045, 1690, 2735, 4425,
2137, 3454, 5591, 9045,
3229, 5218, 8447, 13665,
4321, 6982, 11303, 18285};
Matrix4 p1 = m1 * m2;
for (int i = 0; i < 16; i++) {
EXPECT_EQ(p1.CArray()[i], p1Expect[i]);
}
const Double p2Expect[] = { 63, 70, 77, 84,
435, 482, 529, 576,
2982, 3304, 3626, 3948,
20439, 22646, 24853, 27060};
Matrix4 p2 = m2 * m1;
for (int i = 0; i < 16; i++) {
EXPECT_EQ(p2.CArray()[i], p2Expect[i]);
}
/* Multiplication with the identity matrix produces the same matrix. */
Matrix4 p3 = m1 * Matrix4::Identity();
for (int i = 0; i < 16; i++) {
EXPECT_EQ(p3.CArray()[i], m1.CArray()[i]);
}
Matrix4 p4 = Matrix4::Identity() * m1;
for (int i = 0; i < 16; i++) {
EXPECT_EQ(p4.CArray()[i], m1.CArray()[i]);
}
}