Define constructors for Object and Shape; move a bunch of Sphere code to object_sphere
This commit is contained in:
parent
f062efc349
commit
e5601e7f43
2 changed files with 38 additions and 69 deletions
101
src/object.cc
101
src/object.cc
|
@ -1,11 +1,10 @@
|
|||
/* object.c
|
||||
*
|
||||
* Definition of scene Objects.
|
||||
* Definition of generic scene objects.
|
||||
*
|
||||
* Eryn Wells <eryn@erynwells.me>
|
||||
*/
|
||||
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
|
@ -13,11 +12,7 @@
|
|||
#include "basics.h"
|
||||
#include "object.h"
|
||||
|
||||
|
||||
static int sphere_does_intersect(Object *obj, Ray ray, float **t);
|
||||
static int sphere_point_lies_on_surface(Object *obj, Vector3 p);
|
||||
static Vector3 sphere_compute_normal(Object *obj, Vector3 p);
|
||||
|
||||
#pragma mark - Objects
|
||||
|
||||
/*
|
||||
* Object::Object --
|
||||
|
@ -25,7 +20,17 @@ static Vector3 sphere_compute_normal(Object *obj, Vector3 p);
|
|||
* Default constructor. Create a new Object with an origin at (0, 0, 0).
|
||||
*/
|
||||
Object::Object()
|
||||
: origin()
|
||||
: Object(Vector3::Zero)
|
||||
{ }
|
||||
|
||||
|
||||
/*
|
||||
* Object::Object --
|
||||
*
|
||||
* Constructor. Create a new Object with an origin at o.
|
||||
*/
|
||||
Object::Object(Vector3 o)
|
||||
: origin(o)
|
||||
{ }
|
||||
|
||||
|
||||
|
@ -37,6 +42,7 @@ Object::Object()
|
|||
*/
|
||||
Vector3
|
||||
Object::get_origin()
|
||||
const
|
||||
{
|
||||
return origin;
|
||||
}
|
||||
|
@ -47,77 +53,33 @@ Object::set_origin(Vector3 v)
|
|||
origin = v;
|
||||
}
|
||||
|
||||
#pragma mark - Shapes
|
||||
|
||||
/*
|
||||
* Sphere::does_intersect --
|
||||
* Shape::Shape --
|
||||
*
|
||||
* Compute the intersection of a ray with this Sphere. All intersection t values are returned in the **t argument. The
|
||||
* number of values returned therein is indicated by the return value. Memory is allocated at *t. It is the caller's
|
||||
* responsibility to free it when it is no longer needed. If 0 is returned, no memory needs to be freed.
|
||||
* Default constructor. Create a new Shape with an origin at (0, 0, 0).
|
||||
*/
|
||||
int
|
||||
Sphere::does_intersect(const Ray &ray, float **t)
|
||||
{
|
||||
// Origin of the vector in object space.
|
||||
Vector3 ray_origin_obj = ray.origin - get_origin();
|
||||
Shape::Shape()
|
||||
: Object()
|
||||
{ }
|
||||
|
||||
// Coefficients for quadratic equation.
|
||||
float a = ray.direction.dot(ray.direction);
|
||||
float b = ray.direction.dot(ray_origin_obj) * 2.0;
|
||||
float c = ray_origin_obj.dot(ray_origin_obj) - (radius * radius);
|
||||
|
||||
// Discriminant for the quadratic equation.
|
||||
float discrim = (b * b) - (4.0 * a * c);
|
||||
|
||||
// If the discriminant is less than zero, there are no real (as in not imaginary) solutions to this intersection.
|
||||
if (discrim < 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Compute the intersections, the roots of the quadratic equation. Spheres have at most two intersections.
|
||||
float sqrt_discrim = sqrtf(discrim);
|
||||
float t0 = (-b - sqrt_discrim) / (2.0 * a);
|
||||
float t1 = (-b + sqrt_discrim) / (2.0 * a);
|
||||
|
||||
// If t[1] is less than t[0], swap them (t[0] will always be the first intersection).
|
||||
if (t1 < t0) {
|
||||
float tmp = t0;
|
||||
t0 = t1;
|
||||
t1 = tmp;
|
||||
}
|
||||
|
||||
/*
|
||||
* If the farther intersection of the two is in the negative direction, the sphere is in the ray's negative
|
||||
* direction.
|
||||
*/
|
||||
if (t1 < 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate the memory and store the values. It's possible the two values are equal. Only allocate enough memory to
|
||||
* store the required number of values.
|
||||
*/
|
||||
int nints = (t0 != t1) ? 2 : 1;
|
||||
if (t != NULL) {
|
||||
*t = malloc(sizeof(float) * nints);
|
||||
if (*t == NULL) {
|
||||
return 0;
|
||||
}
|
||||
(*t)[0] = t0;
|
||||
if (nints > 1) {
|
||||
(*t)[1] = t1;
|
||||
}
|
||||
}
|
||||
|
||||
return nints;
|
||||
}
|
||||
|
||||
/*
|
||||
* Shape::Shape --
|
||||
*
|
||||
* Constructor. Create a new Shape with an origin at o.
|
||||
*/
|
||||
Shape::Shape(Vector3 o)
|
||||
: Object(o)
|
||||
{ }
|
||||
|
||||
/*
|
||||
* sphere_point_lies_on_surface --
|
||||
*
|
||||
* Determine if a point lies on the given sphere.
|
||||
*/
|
||||
#if 0
|
||||
int
|
||||
sphere_point_lies_on_surface(Object *obj, Vector3 p)
|
||||
{
|
||||
|
@ -131,6 +93,7 @@ sphere_point_lies_on_surface(Object *obj, Vector3 p)
|
|||
|
||||
return (x * x) + (y * y) + (z * z) == (r * r);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
|
@ -139,6 +102,7 @@ sphere_point_lies_on_surface(Object *obj, Vector3 p)
|
|||
* Compute the normal for the given Object (which must be a Sphere) at the given point. This point must lie on the
|
||||
* surface of the object.
|
||||
*/
|
||||
#if 0
|
||||
/* static */ Vector3
|
||||
sphere_compute_normal(Object *obj, Vector3 p)
|
||||
{
|
||||
|
@ -152,3 +116,4 @@ sphere_compute_normal(Object *obj, Vector3 p)
|
|||
// The fun thing about sphere is the normal to any point on the sphere is the point itself. Woo!
|
||||
return p;
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -17,8 +17,9 @@ class Object
|
|||
{
|
||||
public:
|
||||
Object();
|
||||
Object(Vector3 o);
|
||||
|
||||
Vector3 get_origin();
|
||||
Vector3 get_origin() const;
|
||||
void set_origin(Vector3 v);
|
||||
|
||||
private:
|
||||
|
@ -30,6 +31,9 @@ class Shape
|
|||
: public Object
|
||||
{
|
||||
public:
|
||||
Shape();
|
||||
Shape(Vector3 o);
|
||||
|
||||
virtual int does_intersect(const Ray &ray, float **t) = 0;
|
||||
virtual Vector3 compute_normal(const Vector3 &p) = 0;
|
||||
};
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue