Define constructors for Object and Shape; move a bunch of Sphere code to object_sphere

This commit is contained in:
Eryn Wells 2013-09-10 15:45:13 -07:00
parent f062efc349
commit e5601e7f43
2 changed files with 38 additions and 69 deletions

View file

@ -1,11 +1,10 @@
/* object.c
*
* Definition of scene Objects.
* Definition of generic scene objects.
*
* Eryn Wells <eryn@erynwells.me>
*/
#include <cassert>
#include <cmath>
#include <cstdlib>
@ -13,11 +12,7 @@
#include "basics.h"
#include "object.h"
static int sphere_does_intersect(Object *obj, Ray ray, float **t);
static int sphere_point_lies_on_surface(Object *obj, Vector3 p);
static Vector3 sphere_compute_normal(Object *obj, Vector3 p);
#pragma mark - Objects
/*
* Object::Object --
@ -25,7 +20,17 @@ static Vector3 sphere_compute_normal(Object *obj, Vector3 p);
* Default constructor. Create a new Object with an origin at (0, 0, 0).
*/
Object::Object()
: origin()
: Object(Vector3::Zero)
{ }
/*
* Object::Object --
*
* Constructor. Create a new Object with an origin at o.
*/
Object::Object(Vector3 o)
: origin(o)
{ }
@ -37,6 +42,7 @@ Object::Object()
*/
Vector3
Object::get_origin()
const
{
return origin;
}
@ -47,77 +53,33 @@ Object::set_origin(Vector3 v)
origin = v;
}
#pragma mark - Shapes
/*
* Sphere::does_intersect --
* Shape::Shape --
*
* Compute the intersection of a ray with this Sphere. All intersection t values are returned in the **t argument. The
* number of values returned therein is indicated by the return value. Memory is allocated at *t. It is the caller's
* responsibility to free it when it is no longer needed. If 0 is returned, no memory needs to be freed.
* Default constructor. Create a new Shape with an origin at (0, 0, 0).
*/
int
Sphere::does_intersect(const Ray &ray, float **t)
{
// Origin of the vector in object space.
Vector3 ray_origin_obj = ray.origin - get_origin();
Shape::Shape()
: Object()
{ }
// Coefficients for quadratic equation.
float a = ray.direction.dot(ray.direction);
float b = ray.direction.dot(ray_origin_obj) * 2.0;
float c = ray_origin_obj.dot(ray_origin_obj) - (radius * radius);
// Discriminant for the quadratic equation.
float discrim = (b * b) - (4.0 * a * c);
// If the discriminant is less than zero, there are no real (as in not imaginary) solutions to this intersection.
if (discrim < 0) {
return 0;
}
// Compute the intersections, the roots of the quadratic equation. Spheres have at most two intersections.
float sqrt_discrim = sqrtf(discrim);
float t0 = (-b - sqrt_discrim) / (2.0 * a);
float t1 = (-b + sqrt_discrim) / (2.0 * a);
// If t[1] is less than t[0], swap them (t[0] will always be the first intersection).
if (t1 < t0) {
float tmp = t0;
t0 = t1;
t1 = tmp;
}
/*
* If the farther intersection of the two is in the negative direction, the sphere is in the ray's negative
* direction.
*/
if (t1 < 0) {
return 0;
}
/*
* Allocate the memory and store the values. It's possible the two values are equal. Only allocate enough memory to
* store the required number of values.
*/
int nints = (t0 != t1) ? 2 : 1;
if (t != NULL) {
*t = malloc(sizeof(float) * nints);
if (*t == NULL) {
return 0;
}
(*t)[0] = t0;
if (nints > 1) {
(*t)[1] = t1;
}
}
return nints;
}
/*
* Shape::Shape --
*
* Constructor. Create a new Shape with an origin at o.
*/
Shape::Shape(Vector3 o)
: Object(o)
{ }
/*
* sphere_point_lies_on_surface --
*
* Determine if a point lies on the given sphere.
*/
#if 0
int
sphere_point_lies_on_surface(Object *obj, Vector3 p)
{
@ -131,6 +93,7 @@ sphere_point_lies_on_surface(Object *obj, Vector3 p)
return (x * x) + (y * y) + (z * z) == (r * r);
}
#endif
/*
@ -139,6 +102,7 @@ sphere_point_lies_on_surface(Object *obj, Vector3 p)
* Compute the normal for the given Object (which must be a Sphere) at the given point. This point must lie on the
* surface of the object.
*/
#if 0
/* static */ Vector3
sphere_compute_normal(Object *obj, Vector3 p)
{
@ -152,3 +116,4 @@ sphere_compute_normal(Object *obj, Vector3 p)
// The fun thing about sphere is the normal to any point on the sphere is the point itself. Woo!
return p;
}
#endif

View file

@ -17,8 +17,9 @@ class Object
{
public:
Object();
Object(Vector3 o);
Vector3 get_origin();
Vector3 get_origin() const;
void set_origin(Vector3 v);
private:
@ -30,6 +31,9 @@ class Shape
: public Object
{
public:
Shape();
Shape(Vector3 o);
virtual int does_intersect(const Ray &ray, float **t) = 0;
virtual Vector3 compute_normal(const Vector3 &p) = 0;
};