Define constructors for Object and Shape; move a bunch of Sphere code to object_sphere

This commit is contained in:
Eryn Wells 2013-09-10 15:45:13 -07:00
parent f062efc349
commit e5601e7f43
2 changed files with 38 additions and 69 deletions

View file

@ -1,11 +1,10 @@
/* object.c /* object.c
* *
* Definition of scene Objects. * Definition of generic scene objects.
* *
* Eryn Wells <eryn@erynwells.me> * Eryn Wells <eryn@erynwells.me>
*/ */
#include <cassert> #include <cassert>
#include <cmath> #include <cmath>
#include <cstdlib> #include <cstdlib>
@ -13,11 +12,7 @@
#include "basics.h" #include "basics.h"
#include "object.h" #include "object.h"
#pragma mark - Objects
static int sphere_does_intersect(Object *obj, Ray ray, float **t);
static int sphere_point_lies_on_surface(Object *obj, Vector3 p);
static Vector3 sphere_compute_normal(Object *obj, Vector3 p);
/* /*
* Object::Object -- * Object::Object --
@ -25,7 +20,17 @@ static Vector3 sphere_compute_normal(Object *obj, Vector3 p);
* Default constructor. Create a new Object with an origin at (0, 0, 0). * Default constructor. Create a new Object with an origin at (0, 0, 0).
*/ */
Object::Object() Object::Object()
: origin() : Object(Vector3::Zero)
{ }
/*
* Object::Object --
*
* Constructor. Create a new Object with an origin at o.
*/
Object::Object(Vector3 o)
: origin(o)
{ } { }
@ -37,6 +42,7 @@ Object::Object()
*/ */
Vector3 Vector3
Object::get_origin() Object::get_origin()
const
{ {
return origin; return origin;
} }
@ -47,77 +53,33 @@ Object::set_origin(Vector3 v)
origin = v; origin = v;
} }
#pragma mark - Shapes
/* /*
* Sphere::does_intersect -- * Shape::Shape --
* *
* Compute the intersection of a ray with this Sphere. All intersection t values are returned in the **t argument. The * Default constructor. Create a new Shape with an origin at (0, 0, 0).
* number of values returned therein is indicated by the return value. Memory is allocated at *t. It is the caller's
* responsibility to free it when it is no longer needed. If 0 is returned, no memory needs to be freed.
*/ */
int Shape::Shape()
Sphere::does_intersect(const Ray &ray, float **t) : Object()
{ { }
// Origin of the vector in object space.
Vector3 ray_origin_obj = ray.origin - get_origin();
// Coefficients for quadratic equation.
float a = ray.direction.dot(ray.direction);
float b = ray.direction.dot(ray_origin_obj) * 2.0;
float c = ray_origin_obj.dot(ray_origin_obj) - (radius * radius);
// Discriminant for the quadratic equation.
float discrim = (b * b) - (4.0 * a * c);
// If the discriminant is less than zero, there are no real (as in not imaginary) solutions to this intersection.
if (discrim < 0) {
return 0;
}
// Compute the intersections, the roots of the quadratic equation. Spheres have at most two intersections.
float sqrt_discrim = sqrtf(discrim);
float t0 = (-b - sqrt_discrim) / (2.0 * a);
float t1 = (-b + sqrt_discrim) / (2.0 * a);
// If t[1] is less than t[0], swap them (t[0] will always be the first intersection).
if (t1 < t0) {
float tmp = t0;
t0 = t1;
t1 = tmp;
}
/*
* If the farther intersection of the two is in the negative direction, the sphere is in the ray's negative
* direction.
*/
if (t1 < 0) {
return 0;
}
/*
* Allocate the memory and store the values. It's possible the two values are equal. Only allocate enough memory to
* store the required number of values.
*/
int nints = (t0 != t1) ? 2 : 1;
if (t != NULL) {
*t = malloc(sizeof(float) * nints);
if (*t == NULL) {
return 0;
}
(*t)[0] = t0;
if (nints > 1) {
(*t)[1] = t1;
}
}
return nints;
}
/*
* Shape::Shape --
*
* Constructor. Create a new Shape with an origin at o.
*/
Shape::Shape(Vector3 o)
: Object(o)
{ }
/* /*
* sphere_point_lies_on_surface -- * sphere_point_lies_on_surface --
* *
* Determine if a point lies on the given sphere. * Determine if a point lies on the given sphere.
*/ */
#if 0
int int
sphere_point_lies_on_surface(Object *obj, Vector3 p) sphere_point_lies_on_surface(Object *obj, Vector3 p)
{ {
@ -131,6 +93,7 @@ sphere_point_lies_on_surface(Object *obj, Vector3 p)
return (x * x) + (y * y) + (z * z) == (r * r); return (x * x) + (y * y) + (z * z) == (r * r);
} }
#endif
/* /*
@ -139,6 +102,7 @@ sphere_point_lies_on_surface(Object *obj, Vector3 p)
* Compute the normal for the given Object (which must be a Sphere) at the given point. This point must lie on the * Compute the normal for the given Object (which must be a Sphere) at the given point. This point must lie on the
* surface of the object. * surface of the object.
*/ */
#if 0
/* static */ Vector3 /* static */ Vector3
sphere_compute_normal(Object *obj, Vector3 p) sphere_compute_normal(Object *obj, Vector3 p)
{ {
@ -152,3 +116,4 @@ sphere_compute_normal(Object *obj, Vector3 p)
// The fun thing about sphere is the normal to any point on the sphere is the point itself. Woo! // The fun thing about sphere is the normal to any point on the sphere is the point itself. Woo!
return p; return p;
} }
#endif

View file

@ -17,8 +17,9 @@ class Object
{ {
public: public:
Object(); Object();
Object(Vector3 o);
Vector3 get_origin(); Vector3 get_origin() const;
void set_origin(Vector3 v); void set_origin(Vector3 v);
private: private:
@ -30,6 +31,9 @@ class Shape
: public Object : public Object
{ {
public: public:
Shape();
Shape(Vector3 o);
virtual int does_intersect(const Ray &ray, float **t) = 0; virtual int does_intersect(const Ray &ray, float **t) = 0;
virtual Vector3 compute_normal(const Vector3 &p) = 0; virtual Vector3 compute_normal(const Vector3 &p) = 0;
}; };