290 lines
5.9 KiB
C++
290 lines
5.9 KiB
C++
/* scene.c
|
|
*
|
|
* Definition of Scene-related functions.
|
|
*
|
|
* Eryn Wells <eryn@erynwells.me>
|
|
*/
|
|
|
|
#include <chrono>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
|
|
#include "basics.h"
|
|
#include "light.h"
|
|
#include "object.h"
|
|
#include "scene.h"
|
|
#include "writer.h"
|
|
|
|
|
|
Scene::Scene()
|
|
: width(640), height(480),
|
|
max_depth(5),
|
|
min_weight(1e-4),
|
|
ambient(new AmbientLight()),
|
|
shapes(),
|
|
lights(),
|
|
nrays(0),
|
|
pixels(NULL)
|
|
{ }
|
|
|
|
|
|
Scene::~Scene()
|
|
{
|
|
if (ambient != NULL) {
|
|
delete ambient;
|
|
}
|
|
|
|
for (Shape *s : shapes) {
|
|
delete s;
|
|
}
|
|
shapes.clear();
|
|
|
|
for (PointLight *l : lights) {
|
|
delete l;
|
|
}
|
|
lights.clear();
|
|
|
|
if (pixels != NULL) {
|
|
delete[] pixels;
|
|
_is_rendered = false;
|
|
}
|
|
}
|
|
|
|
|
|
bool
|
|
Scene::is_rendered()
|
|
const
|
|
{
|
|
return _is_rendered;
|
|
}
|
|
|
|
|
|
int
|
|
Scene::get_width()
|
|
const
|
|
{
|
|
return width;
|
|
}
|
|
|
|
|
|
int
|
|
Scene::get_height()
|
|
const
|
|
{
|
|
return height;
|
|
}
|
|
|
|
|
|
AmbientLight &
|
|
Scene::get_ambient()
|
|
const
|
|
{
|
|
return *ambient;
|
|
}
|
|
|
|
|
|
const Color *
|
|
Scene::get_pixels()
|
|
const
|
|
{
|
|
return pixels;
|
|
}
|
|
|
|
|
|
/*
|
|
* scene_load --
|
|
*
|
|
* Load scene objects into this Scene from the given file.
|
|
*/
|
|
void
|
|
Scene::read(const std::string &filename)
|
|
{ }
|
|
|
|
|
|
/*
|
|
* scene_save --
|
|
*
|
|
* Write a rendered scene to the given file.
|
|
*/
|
|
void
|
|
Scene::write(Writer &writer, const std::string &filename)
|
|
{
|
|
writer.write_scene(*this, filename);
|
|
}
|
|
|
|
|
|
/*
|
|
* Scene::render --
|
|
*
|
|
* Render the given Scene.
|
|
*/
|
|
void
|
|
Scene::render()
|
|
{
|
|
std::chrono::time_point<std::chrono::system_clock> start, end;
|
|
start = std::chrono::system_clock::now();
|
|
|
|
pixels = new Color[width * height];
|
|
|
|
Ray primary_ray;
|
|
Vector3 o, d;
|
|
for (int y = 0; y < height; y++) {
|
|
for (int x = 0; x < width; x++) {
|
|
// Assemble a ray and trace it.
|
|
o = Vector3(x, y, -1000);
|
|
d = Vector3(0, 0, 1);
|
|
d.normalize();
|
|
primary_ray = Ray(o, d);
|
|
Color c = trace_ray(primary_ray);
|
|
pixels[y * width + x] = c;
|
|
}
|
|
}
|
|
|
|
end = std::chrono::system_clock::now();
|
|
std::chrono::duration<float> seconds = end - start;
|
|
|
|
_is_rendered = true;
|
|
printf("Scene rendered. %d rays traced in %f seconds.\n", nrays, seconds.count());
|
|
}
|
|
|
|
|
|
/*
|
|
* Scene::add_shape --
|
|
*
|
|
* Add a shape to the scene.
|
|
*/
|
|
void
|
|
Scene::add_shape(Shape *shape)
|
|
{
|
|
shapes.push_back(shape);
|
|
}
|
|
|
|
|
|
/*
|
|
* Scene::add_light --
|
|
*
|
|
* Add a light to the scene.
|
|
*/
|
|
void
|
|
Scene::add_light(PointLight *light)
|
|
{
|
|
lights.push_back(light);
|
|
}
|
|
|
|
|
|
/*
|
|
* Scene::trace_ray --
|
|
*
|
|
* Trace the given ray through the scene, recursing until depth has been reached.
|
|
*/
|
|
Color
|
|
Scene::trace_ray(const Ray &ray,
|
|
const int depth,
|
|
const float weight)
|
|
{
|
|
if (depth >= max_depth || weight <= min_weight) {
|
|
return Color::Black;
|
|
}
|
|
|
|
Color out_color = Color::Black;
|
|
Shape *intersected_shape = NULL;
|
|
float *t = NULL;
|
|
float nearest_t = INFINITY;
|
|
int nints;
|
|
|
|
// Keep stats.
|
|
nrays++;
|
|
|
|
// Find intersections of this ray with objects in the scene.
|
|
for (Shape *s : shapes) {
|
|
nints = s->does_intersect(ray, &t);
|
|
if (nints > 0) {
|
|
for (int i = 0; i < nints; i++) {
|
|
if (t[i] < 1e-2) {
|
|
break;
|
|
}
|
|
if (t[i] < nearest_t) {
|
|
intersected_shape = s;
|
|
nearest_t = t[i];
|
|
}
|
|
}
|
|
delete[] t;
|
|
}
|
|
}
|
|
|
|
// If there was no intersection, return black.
|
|
if (intersected_shape == NULL) {
|
|
return out_color;
|
|
}
|
|
|
|
Material shape_material = intersected_shape->get_material();
|
|
Color shape_color = shape_material.get_diffuse_color();
|
|
|
|
Vector3 intersection = ray.parameterize(nearest_t);
|
|
Vector3 normal = intersected_shape->compute_normal(intersection);
|
|
|
|
/*
|
|
* Diffuse lighting. (Shading, etc.)
|
|
*/
|
|
|
|
Vector3 light_direction;
|
|
float ldotn, diffuse_level, ambient_level;
|
|
Ray shadow_ray;
|
|
|
|
for (PointLight *l : lights) {
|
|
light_direction = (intersection - l->get_origin()).normalize();
|
|
ldotn = light_direction.dot(normal);
|
|
|
|
if (ldotn < 0) {
|
|
ldotn = 0.0;
|
|
}
|
|
|
|
diffuse_level = shape_material.get_diffuse_level();
|
|
ambient_level = 1.0 - diffuse_level;
|
|
|
|
shadow_ray = Ray(intersection, light_direction);
|
|
for (Shape *s : shapes) {
|
|
// Skip the intersected shape.
|
|
if (s == intersected_shape) {
|
|
continue;
|
|
}
|
|
|
|
// Figure out if we're in shadow.
|
|
if (s->does_intersect(shadow_ray, NULL) > 0) {
|
|
diffuse_level = 0.0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute basic Lambert diffuse shading for this object.
|
|
*/
|
|
out_color += shape_color * ( ambient_level * ambient->compute_color_contribution()
|
|
+ diffuse_level * ldotn);
|
|
}
|
|
|
|
/*
|
|
* Specular lighting. (Reflections, etc.)
|
|
*/
|
|
|
|
float specular_level = shape_material.get_specular_level();
|
|
const Color &specular_color = shape_material.get_specular_color();
|
|
|
|
/*
|
|
* Compute the reflection ray. Computing the direction of the reflection ray is done by the following formula:
|
|
*
|
|
* d = dr - 2n(dr . n)
|
|
*
|
|
* where d is the direction, dr is the direction of the incoming ray, and n is the normal vector. Period (.)
|
|
* indicates the dot product.
|
|
*
|
|
* The origin of the reflection ray is the point on the surface where the incoming ray intersected with it.
|
|
*/
|
|
Ray reflection_ray = Ray(intersection, ray.direction - 2.0 * normal * ray.direction.dot(normal));
|
|
Color reflection_color = trace_ray(reflection_ray, depth + 1, weight * specular_level);
|
|
|
|
// TODO: Mix in specular_color of material.
|
|
out_color += specular_level * specular_color * reflection_color;
|
|
|
|
return out_color;
|
|
}
|