276 lines
5.7 KiB
C++
276 lines
5.7 KiB
C++
/* camera.cc
|
|
* vim: set tw=80:
|
|
* Eryn Wells <eryn@erynwells.me>
|
|
*/
|
|
|
|
#include "camera.h"
|
|
#include "log.hh"
|
|
|
|
#define LOG_NAME "camera"
|
|
#include "logModule.hh"
|
|
|
|
|
|
#pragma mark - Generic Camera
|
|
|
|
Camera::Camera()
|
|
: mDirection(Vector3::Z),
|
|
mRight(1.33, 0, 0),
|
|
mUp(Vector3::Y)
|
|
{ }
|
|
|
|
|
|
Camera::Camera(const Camera& other)
|
|
: mDirection(other.mDirection),
|
|
mRight(other.mRight),
|
|
mUp(other.mUp)
|
|
{ }
|
|
|
|
|
|
Camera::~Camera()
|
|
{ }
|
|
|
|
|
|
/*
|
|
* Camera::GetOrigin --
|
|
*/
|
|
const Vector3&
|
|
Camera::GetOrigin()
|
|
const
|
|
{
|
|
return mOrigin;
|
|
}
|
|
|
|
|
|
/*
|
|
* Camera::SetOrigin --
|
|
*/
|
|
void
|
|
Camera::SetOrigin(const Vector3 &origin)
|
|
{
|
|
mOrigin = origin;
|
|
}
|
|
|
|
|
|
const Vector3&
|
|
Camera::get_direction()
|
|
const
|
|
{
|
|
return mDirection;
|
|
}
|
|
|
|
void
|
|
Camera::set_direction(const Vector3 &direction)
|
|
{
|
|
mDirection = direction;
|
|
}
|
|
|
|
|
|
const Vector3&
|
|
Camera::GetRight()
|
|
const
|
|
{
|
|
return mRight;
|
|
}
|
|
|
|
|
|
void
|
|
Camera::SetRight(const Vector3& right)
|
|
{
|
|
mRight = right;
|
|
}
|
|
|
|
|
|
const Vector3&
|
|
Camera::GetUp()
|
|
const
|
|
{
|
|
return mUp;
|
|
}
|
|
|
|
|
|
void
|
|
Camera::SetUp(const Vector3& up)
|
|
{
|
|
mUp = up;
|
|
}
|
|
|
|
|
|
bool
|
|
Camera::IsLeftHanded()
|
|
const
|
|
{
|
|
/*
|
|
* The cross product of the up and direction vectors is a vector
|
|
* perpendicular to the plane containing those vectors. By definition the
|
|
* right vector is (in almost all cases) perpendicular to that plane.
|
|
*
|
|
* The dot product indicates the angle between this vector and the right
|
|
* vector. If it's greater than 0, then the vector is pointing right of the
|
|
* up-direction plane and the coordinate system is right handed. If less
|
|
* than 0, the vector is pointing left of the up-direction plane and the
|
|
* coordinate system is left-handed.
|
|
*/
|
|
return mUp.cross(mDirection).dot(mRight) < 0.0;
|
|
}
|
|
|
|
|
|
void
|
|
Camera::LookAt(const Vector3& pt)
|
|
{
|
|
/*
|
|
* Precalulate these in order to preserve the aspect ratio and orientation
|
|
* of the camera across the LookAt operation.
|
|
*/
|
|
const Double directionLength = mDirection.length();
|
|
const Double rightLength = mRight.length();
|
|
const Double upLength = mUp.length();
|
|
const bool isLeftHanded = IsLeftHanded();
|
|
|
|
/* Orient the camera towards the point. */
|
|
mDirection = (pt - mOrigin).normalize();
|
|
/* TODO: Check for zero length direction vector. */
|
|
|
|
/*
|
|
* Create a new right vector, normalized and perpendicular to the plane
|
|
* containing the Y unit vector and direction vector.
|
|
*
|
|
* The up vector is perpendicular to the plane containing the new right
|
|
* vector and the direction vector.
|
|
*
|
|
* TODO: This is always the Y vector. POV-Ray has a sky vector, which
|
|
* specifies the vector along which LookAt pans and tilts the camera. It
|
|
* might be worth looking into, at some point.
|
|
*/
|
|
mRight = Vector3::Y.cross(mDirection).normalize();
|
|
mUp = mDirection.cross(mRight);
|
|
|
|
/*
|
|
* Now, fix up the direction, right, and up vectors so that their magnitudes
|
|
* match what they were before the move.
|
|
*/
|
|
mDirection *= directionLength;
|
|
mRight *= isLeftHanded ? rightLength : -rightLength;
|
|
mUp *= upLength;
|
|
|
|
LOG_DEBUG << "Camera is looking at " << pt;
|
|
}
|
|
|
|
|
|
std::string
|
|
Camera::GetTypeString()
|
|
const
|
|
{
|
|
return "GENERIC";
|
|
}
|
|
|
|
|
|
void
|
|
Camera::WriteType(std::ostream& ost)
|
|
const
|
|
{
|
|
ost << GetTypeString();
|
|
}
|
|
|
|
#pragma mark - Perspective Camera
|
|
|
|
PerspectiveCamera::PerspectiveCamera()
|
|
: Camera()
|
|
{ }
|
|
|
|
|
|
PerspectiveCamera::PerspectiveCamera(const Camera& other)
|
|
: Camera(other)
|
|
{ }
|
|
|
|
|
|
Ray
|
|
PerspectiveCamera::compute_primary_ray(const int x,
|
|
const int width,
|
|
const int y,
|
|
const int height)
|
|
const
|
|
{
|
|
/*
|
|
* Center x and y in the pixel and convert them to be coordinates between
|
|
* -0.5 and 0.5.
|
|
*/
|
|
double x0 = (x + 0.5) / width - 0.5;
|
|
double y0 = ((height - 1.0) - (y - 0.5)) / height - 0.5;
|
|
|
|
Vector3 direction = LinearCombination(1.0, get_direction(),
|
|
x0, GetRight(),
|
|
y0, GetUp());
|
|
return Ray(GetOrigin(), direction.normalize());
|
|
}
|
|
|
|
|
|
std::string
|
|
PerspectiveCamera::GetTypeString()
|
|
const
|
|
{
|
|
return "perspective";
|
|
}
|
|
|
|
#pragma mark - Orthographic Camera
|
|
|
|
OrthographicCamera::OrthographicCamera()
|
|
: Camera()
|
|
{ }
|
|
|
|
|
|
OrthographicCamera::OrthographicCamera(const Camera& other)
|
|
: Camera(other)
|
|
{ }
|
|
|
|
|
|
/*
|
|
* OrthographicCamera::compute_primary_ray --
|
|
*/
|
|
/**
|
|
* Compute a primary ray given an (x,y) coordinate pair. The orthographic camera
|
|
* projects rays parallel to the viewing direction through the (x,y) coordinate
|
|
* given. Thus, the size of the orthographic camera should be set to the size of
|
|
* the view into the scene.
|
|
*/
|
|
Ray
|
|
OrthographicCamera::compute_primary_ray(const int x,
|
|
const int width,
|
|
const int y,
|
|
const int height)
|
|
const
|
|
{
|
|
/*
|
|
* Center x and y in the pixel and convert them to be coordinates between
|
|
* -0.5 and 0.5.
|
|
*/
|
|
double x0 = (x + 0.5) / width + 0.5;
|
|
double y0 = ((height - 1.0) - (y - 0.5)) / height - 0.5;
|
|
|
|
Vector3 origin = LinearCombination(1.0, GetOrigin(),
|
|
x0, GetRight(),
|
|
y0, GetUp());
|
|
return Ray(origin, get_direction());
|
|
}
|
|
|
|
|
|
std::string
|
|
OrthographicCamera::GetTypeString()
|
|
const
|
|
{
|
|
return "orthographic";
|
|
}
|
|
|
|
|
|
std::ostream&
|
|
operator<<(std::ostream& ost,
|
|
const Camera& camera)
|
|
{
|
|
ost << "[Camera ";
|
|
camera.WriteType(ost);
|
|
ost << " origin=" << camera.mOrigin
|
|
<< " direction=" << camera.mDirection
|
|
<< " right=" << camera.mRight
|
|
<< " up=" << camera.mUp
|
|
<< "]";
|
|
return ost;
|
|
}
|