charles/src/basics.cc

530 lines
8.6 KiB
C++

/* basics.c
*
* Definition of basic types.
*
* - Vector3 is a three tuple vector of x, y, and z.
* - Ray is a vector plus a direction.
* - Color is a four tuple of red, green, blue, and alpha.
*
* Eryn Wells <eryn@erynwells.me>
*/
#include <cmath>
#include "basics.h"
#pragma mark - Vectors
const Vector3 Vector3::Zero = Vector3();
const Vector3 Vector3::X = Vector3(1, 0, 0);
const Vector3 Vector3::Y = Vector3(0, 1, 0);
const Vector3 Vector3::Z = Vector3(0, 0, 1);
/*
* Vector3::Vector3 --
*
* Default constructor. Create a zero vector.
*/
Vector3::Vector3()
: Vector3(0.0, 0.0, 0.0)
{ }
/*
* Vector3::Vector3 --
*
* Constructor. Create a vector consisting of the given coordinates.
*/
Vector3::Vector3(Double _x, Double _y, Double _z)
: x(_x), y(_y), z(_z)
{ }
/*
* Vector3::operator= --
*
* Copy the given vector's values into this vector. Return a reference to this vector.
*/
Vector3 &
Vector3::operator=(const Vector3 &v)
{
x = v.x;
y = v.y;
z = v.z;
return *this;
}
/*
* Vector3::operator*= --
* Vector3::operator/= --
* Vector3::operator+= --
* Vector3::operator-= --
*
* Perform the corresponding arithmetic operation on this vector and the given vector. These methods are destructive and
* a reference to this vector is returned.
*/
Vector3 &
Vector3::operator*=(const Double &rhs)
{
x *= rhs;
y *= rhs;
z *= rhs;
return *this;
}
Vector3 &
Vector3::operator/=(const Double &rhs)
{
return *this *= (1.0f / rhs);
}
Vector3 &
Vector3::operator+=(const Vector3 &rhs)
{
x += rhs.x;
y += rhs.y;
z += rhs.z;
return *this;
}
Vector3 &
Vector3::operator-=(const Vector3 &rhs)
{
return *this += -rhs;
}
/*
* Vector3::operator* --
* Vector3::operator/ --
* Vector3::operator+ --
* Vector3::operator- --
*
* Perform the corresponding operation on a copy of this vector. Return a new vector.
*/
Vector3
Vector3::operator*(const Double &rhs)
const
{
return Vector3(*this) *= rhs;
}
Vector3
Vector3::operator/(const Double &rhs)
const
{
return Vector3(*this) /= rhs;
}
Vector3
Vector3::operator+(const Vector3 &rhs)
const
{
return Vector3(*this) += rhs;
}
Vector3
Vector3::operator-(const Vector3 &rhs)
const
{
return Vector3(*this) -= rhs;
}
/*
* Vector3::operator- --
*
* Negate this vector. Return a new vector.
*/
Vector3
Vector3::operator-()
const
{
return Vector3(-x, -y, -z);
}
/*
* Vector3::operator== --
* Vector3::operator!= --
*
* Compute boolean equality and non-equality of this and the given vectors.
*/
bool
Vector3::operator==(const Vector3 &rhs)
const
{
return x == rhs.x && y == rhs.y && z == rhs.z;
}
bool
Vector3::operator!=(const Vector3 &rhs)
const
{
return !(*this == rhs);
}
/*
* Vector3::length2 --
*
* Compute and return the length-squared of this vector.
*/
Double
Vector3::length2()
const
{
return x*x + y*y + z*z;
}
/*
* Vector3::length --
*
* Compute and return the length of this vector.
*/
Double
Vector3::length()
const
{
return sqrt(length2());
}
/*
* Vector3::dot --
*
* Compute and return the dot product of this and the given vectors.
*/
Double
Vector3::dot(const Vector3 &v)
const
{
return x*v.x + y*v.y + z*v.z;
}
/*
* Vector3::cross --
*
* Compute and return the cross product of this and the given vectors.
*/
Vector3
Vector3::cross(const Vector3 &v)
const
{
return Vector3(y*v.z - z*v.y, z*v.x - x*v.z, x*v.y - y*v.x);
}
/*
* Vector3::normalize --
*/
Vector3 &
Vector3::normalize()
{
// Use the overloaded /= compound operator to do this.
return *this /= length();
}
/*
* Vector3::normalized --
*/
Vector3
Vector3::normalized()
const
{
return *this / length();
}
/*
* operator* --
*
* Multiply the given float by the given vector. Return a new vector.
*/
const Vector3
operator*(const Double &lhs, const Vector3 &rhs)
{
return rhs * lhs;
}
std::ostream &
operator<<(std::ostream &os, const Vector3 &v)
{
// Stream the vector like this: <x, y, z>
os << "<" << v.x << ", " << v.y << ", " << v.z << ">";
return os;
}
Vector3
LinearCombination(const Double k1, const Vector3& v1,
const Double k2, const Vector3& v2,
const Double k3, const Vector3& v3)
{
return Vector3(k1 * v1.x + k2 * v2.x + k3 * v3.x,
k1 * v1.y + k2 * v2.y + k3 * v3.y,
k1 * v1.z + k2 * v2.z + k3 * v3.z);
}
#pragma mark - Rays
/*
* Ray::Ray --
*
* Default constructor. Create a ray at the origin (0, 0, 0) with direction (0, 0, 0).
*/
Ray::Ray()
: Ray(Vector3::Zero, Vector3::Zero)
{ }
/*
* Ray::Ray --
*
* Constructor. Create a ray with the given origin and direction.
*/
Ray::Ray(Vector3 o, Vector3 d)
: origin(o), direction(d)
{ }
/*
* Ray::parameterize --
*
* Compute and return the point given by parameterizing this Ray by time t.
*/
Vector3
Ray::parameterize(const Double& t)
const
{
return origin + t * direction;
}
std::ostream &
operator<<(std::ostream &os, const Ray &r)
{
os << "[Ray " << r.origin << " " << r.direction << "]";
return os;
}
#pragma mark - Colors
const Color Color::Black = Color();
const Color Color::White = Color(1.0, 1.0, 1.0, 1.0);
const Color Color::Red = Color(1.0, 0.0, 0.0, 1.0);
const Color Color::Green = Color(0.0, 1.0, 0.0, 1.0);
const Color Color::Blue = Color(0.0, 0.0, 1.0, 1.0);
/*
* Color::Color --
*
* Default constructor. Create a new Color with zeros for all components (black).
*/
Color::Color()
: Color(0.0, 0.0, 0.0, 0.0)
{ }
/*
* Color::Color --
*
* Constructor. Create a new Color with the given RGB components. Alpha is 1.0.
*/
Color::Color(const float &r, const float &g, const float &b)
: Color(r, g, b, 1.0)
{ }
/*
* Color::Color --
*
* Constructor. Create a new Color with the given components.
*/
Color::Color(const float &r, const float &g, const float &b, const float &a)
: red(r), green(g), blue(b), alpha(a)
{ }
/*
* Color::operator*= --
* Color::operator/= --
* Color::operator+= --
* Color::operator-= --
*
* Perform the corresponding arithmetic operation on this color and the given scalar. These methods are destructive and
* a reference to this color is returned.
*/
Color &
Color::operator*=(const float &rhs)
{
red *= rhs;
green *= rhs;
blue *= rhs;
return *this;
}
Color &
Color::operator/=(const float &rhs)
{
return *this *= (1.0 / rhs);
}
Color &
Color::operator+=(const float &rhs)
{
red += rhs;
green += rhs;
blue += rhs;
alpha += rhs;
return *this;
}
Color &
Color::operator-=(const float &rhs)
{
return *this += -rhs;
}
/*
* Color::operator* --
* Color::operator/ --
* Color::operator+ --
* Color::operator- --
*
* Perform the corresponding operation on a copy of this color and the given scalar. Return a new vector.
*/
Color
Color::operator*(const float &rhs)
const
{
return Color(*this) *= rhs;
}
Color
Color::operator/(const float &rhs)
const
{
return Color(*this) /= rhs;
}
Color
Color::operator+(const float &rhs)
const
{
return Color(*this) += rhs;
}
Color
Color::operator-(const float &rhs)
const
{
return Color(*this) -= rhs;
}
/*
* Color::operator= --
*
* Copy the given color's values into this color. Return a reference to this color.
*/
Color &
Color::operator=(const Color &rhs)
{
red = rhs.red;
green = rhs.green;
blue = rhs.blue;
alpha = rhs.alpha;
return *this;
}
Color &
Color::operator*=(const Color &rhs)
{
red *= rhs.red;
green *= rhs.green;
blue *= rhs.blue;
return *this;
}
Color &
Color::operator/=(const Color &rhs)
{
red *= (1.0 / rhs.red);
green *= (1.0 / rhs.green);
blue *= (1.0 / rhs.blue);
return *this;
}
Color &
Color::operator+=(const Color &rhs)
{
red += rhs.red;
green += rhs.green;
blue += rhs.blue;
alpha += rhs.alpha;
return *this;
}
Color &
Color::operator-=(const Color &rhs)
{
red -= rhs.red;
green -= rhs.green;
blue -= rhs.blue;
alpha -= rhs.alpha;
return *this;
}
Color
Color::operator*(const Color &rhs)
const
{
return Color(*this) *= rhs;
}
Color
Color::operator/(const Color &rhs)
const
{
return Color(*this) /= rhs;
}
Color
Color::operator+(const Color &rhs)
const
{
return Color(*this) += rhs;
}
Color
Color::operator-(const Color &rhs)
const
{
return Color(*this) -= rhs;
}
const Color
operator*(const float &lhs, const Color &rhs)
{
return rhs * lhs;
}
std::ostream &
operator<<(std::ostream &os, const Color &c)
{
// Stream colors like this: <r, g, b, a>
os << "<" << c.red << ", " << c.green << ", " << c.blue << ", " << c.alpha << ">";
return os;
}