// Eryn Wells use crate::library; use crate::{LeadingBitScanner, TrailingBitScanner}; use chessfriend_core::{Color, Direction, File, Rank, Square}; use std::fmt; use std::ops::Not; #[derive(Clone, Copy, Eq, Hash, PartialEq)] pub struct BitBoard(pub(crate) u64); macro_rules! moves_getter { ($getter_name:ident) => { pub fn $getter_name(sq: Square) -> BitBoard { library::library().$getter_name(sq) } }; } impl BitBoard { pub const EMPTY: BitBoard = BitBoard(u64::MIN); pub const FULL: BitBoard = BitBoard(u64::MAX); pub const fn empty() -> BitBoard { BitBoard(0) } pub const fn new(bits: u64) -> BitBoard { BitBoard(bits) } pub fn rank(rank: &u8) -> BitBoard { debug_assert!(*rank < 8); library::RANKS[*rank as usize] } pub fn file(file: &u8) -> BitBoard { debug_assert!(*file < 8); library::FILES[*file as usize] } pub fn ray(sq: Square, dir: Direction) -> &'static BitBoard { library::library().ray(sq, dir) } pub fn pawn_attacks(sq: Square, color: Color) -> BitBoard { library::library().pawn_attacks(sq, color) } pub fn pawn_pushes(sq: Square, color: Color) -> BitBoard { library::library().pawn_pushes(sq, color) } moves_getter!(knight_moves); moves_getter!(bishop_moves); moves_getter!(rook_moves); moves_getter!(queen_moves); moves_getter!(king_moves); pub const fn kingside(color: Color) -> &'static BitBoard { &library::KINGSIDES[color as usize] } pub const fn queenside(color: Color) -> &'static BitBoard { &library::QUEENSIDES[color as usize] } } impl BitBoard { pub const fn as_bits(&self) -> &u64 { &self.0 } /// Returns `true` if the [`BitBoard`] has no bits set. /// /// ## Examples /// /// ``` /// use chessfriend_bitboard::BitBoard; /// assert!(BitBoard::EMPTY.is_populated()); /// assert!(!BitBoard::FULL.is_populated()); /// assert!(!BitBoard::new(0b1000).is_populated()); /// ``` pub const fn is_empty(&self) -> bool { self.0 == 0 } /// Returns `true` if the [`BitBoard`] has at least one bit set. /// /// ## Examples /// /// ``` /// use chessfriend_bitboard::BitBoard; /// assert!(!BitBoard::EMPTY.is_populated()); /// assert!(BitBoard::FULL.is_populated()); /// assert!(BitBoard::new(0b1).is_populated()); /// ``` pub const fn is_populated(&self) -> bool { self.0 != 0 } /// Returns `true` if this [`BitBoard`] has the bit corresponding to `square` set. pub fn is_set(self, square: Square) -> bool { let square_bitboard: BitBoard = square.into(); !(self & square_bitboard).is_empty() } /// The number of 1 bits in the BitBoard. /// /// ## Examples /// /// ``` /// use chessfriend_bitboard::BitBoard; /// assert_eq!(BitBoard::EMPTY.population_count(), 0); /// assert_eq!(BitBoard::new(0b01011110010).population_count(), 6); /// assert_eq!(BitBoard::FULL.population_count(), 64); /// ``` pub const fn population_count(&self) -> u32 { self.0.count_ones() } pub fn set_square(&mut self, sq: Square) { let sq_bb: BitBoard = sq.into(); *self |= sq_bb } pub fn clear_square(&mut self, sq: Square) { let sq_bb: BitBoard = sq.into(); *self &= !sq_bb } /// Returns `true` if this BitBoard represents a single square. /// /// ## Examples /// /// ``` /// use chessfriend_bitboard::BitBoard; /// assert!(!BitBoard::EMPTY.is_single_square(), "Empty bitboards represent no squares"); /// assert!(!BitBoard::FULL.is_single_square(), "Full bitboards represent all the squares"); /// assert!(!BitBoard::new(0b010011110101101100).is_single_square(), "This bitboard represents a bunch of squares"); /// assert!(BitBoard::new(0b10000000000000).is_single_square()); /// ``` pub fn is_single_square(&self) -> bool { self.0.is_power_of_two() } } impl BitBoard { /// Returns an Iterator over the occupied squares. /// /// The Iterator yields squares starting from the leading (most-significant bit) end of the /// board to the trailing (least-significant bit) end. #[must_use] pub fn occupied_squares(&self) -> impl Iterator { LeadingBitScanner::new(self.0).map(|idx| unsafe { Square::from_index(idx as u8) }) } /// Return an Iterator over the occupied squares, starting from the trailing /// (least-significant bit) end of the field. #[must_use] pub fn occupied_squares_trailing(&self) -> impl Iterator { TrailingBitScanner::new(self.0).map(|idx| unsafe { Square::from_index(idx as u8) }) } #[must_use] pub fn first_occupied_square(&self) -> Option { let leading_zeros = self.0.leading_zeros() as u8; if leading_zeros < Square::NUM as u8 { unsafe { Some(Square::from_index(Square::NUM as u8 - leading_zeros - 1)) } } else { None } } #[must_use] pub fn first_occupied_square_trailing(&self) -> Option { let trailing_zeros = self.0.trailing_zeros() as u8; if trailing_zeros < Square::NUM as u8 { unsafe { Some(Square::from_index(trailing_zeros)) } } else { None } } } impl Default for BitBoard { fn default() -> Self { BitBoard::EMPTY } } impl From for BitBoard { fn from(value: File) -> Self { library::FILES[*value.as_index() as usize] } } impl From> for BitBoard { fn from(value: Option) -> Self { value.map_or(BitBoard::EMPTY, Into::::into) } } impl From for BitBoard { fn from(value: Rank) -> Self { library::FILES[*value.as_index() as usize] } } impl From for BitBoard { fn from(value: Square) -> Self { BitBoard(1u64 << value as u32) } } impl FromIterator for BitBoard { fn from_iter>(iter: T) -> Self { let mut builder = BitBoardBuilder::empty(); for sq in iter { builder = builder.square(sq) } builder.build() } } #[derive(Clone, Copy, Debug, Eq, PartialEq)] pub enum TryFromBitBoardError { NotSingleSquare, } impl TryFrom for Square { type Error = TryFromBitBoardError; fn try_from(value: BitBoard) -> Result { if !value.is_single_square() { return Err(TryFromBitBoardError::NotSingleSquare); } unsafe { Ok(Square::from_index(value.0.trailing_zeros() as u8)) } } } impl fmt::Binary for BitBoard { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // Delegate to u64's implementation of Binary. fmt::Binary::fmt(&self.0, f) } } impl fmt::LowerHex for BitBoard { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // Delegate to u64's implementation of LowerHex. fmt::LowerHex::fmt(&self.0, f) } } impl fmt::UpperHex for BitBoard { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // Delegate to u64's implementation of UpperHex. fmt::UpperHex::fmt(&self.0, f) } } impl fmt::Display for BitBoard { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let binary_ranks = format!("{:064b}", self.0) .chars() .rev() .map(|c| String::from(c)) .collect::>(); let mut ranks_written = 0; for rank in binary_ranks.chunks(8).rev() { let joined_rank = rank.join(" "); write!(f, "{}", joined_rank)?; ranks_written += 1; if ranks_written < 8 { write!(f, "\n")?; } } Ok(()) } } impl fmt::Debug for BitBoard { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> { write!(f, "BitBoard({:064b})", self.0) } } macro_rules! infix_op { ($trait_type:ident, $func_name:ident, $type:ty) => { infix_op!($trait_type, $func_name, $type, $type); infix_op!($trait_type, $func_name, $type, &$type); infix_op!($trait_type, $func_name, &$type, $type); infix_op!($trait_type, $func_name, &$type, &$type); }; ($trait_type:ident, $func_name:ident, $left_type:ty, $right_type:ty) => { impl std::ops::$trait_type<$right_type> for $left_type { type Output = BitBoard; #[inline] fn $func_name(self, rhs: $right_type) -> Self::Output { BitBoard(std::ops::$trait_type::$func_name(self.0, rhs.0)) } } }; } macro_rules! assign_op { ($trait_type:ident, $func_name:ident, $type:ty) => { impl std::ops::$trait_type for $type { #[inline] fn $func_name(&mut self, rhs: $type) { std::ops::$trait_type::$func_name(&mut self.0, rhs.0) } } impl std::ops::$trait_type<&$type> for $type { #[inline] fn $func_name(&mut self, rhs: &$type) { std::ops::$trait_type::$func_name(&mut self.0, rhs.0) } } }; } infix_op!(BitAnd, bitand, BitBoard); infix_op!(BitOr, bitor, BitBoard); infix_op!(BitXor, bitxor, BitBoard); assign_op!(BitAndAssign, bitand_assign, BitBoard); assign_op!(BitOrAssign, bitor_assign, BitBoard); assign_op!(BitXorAssign, bitxor_assign, BitBoard); impl Not for BitBoard { type Output = BitBoard; #[inline] fn not(self) -> Self::Output { BitBoard(!self.0) } } impl Not for &BitBoard { type Output = BitBoard; #[inline] fn not(self) -> Self::Output { BitBoard(!self.0) } } #[cfg(test)] mod tests { use super::*; use crate::bitboard; use chessfriend_core::Square; #[test] #[ignore] fn display_and_debug() { let bb = BitBoard::file(&0) | BitBoard::file(&3) | BitBoard::rank(&7) | BitBoard::rank(&4); println!("{}", &bb); } #[test] fn rank() { assert_eq!(BitBoard::rank(&0).0, 0xFF, "Rank 1"); assert_eq!(BitBoard::rank(&1).0, 0xFF00, "Rank 2"); assert_eq!(BitBoard::rank(&2).0, 0xFF0000, "Rank 3"); assert_eq!(BitBoard::rank(&3).0, 0xFF000000, "Rank 4"); assert_eq!(BitBoard::rank(&4).0, 0xFF00000000, "Rank 5"); assert_eq!(BitBoard::rank(&5).0, 0xFF0000000000, "Rank 6"); assert_eq!(BitBoard::rank(&6).0, 0xFF000000000000, "Rank 7"); assert_eq!(BitBoard::rank(&7).0, 0xFF00000000000000, "Rank 8"); } #[test] fn is_empty() { assert!(BitBoard(0).is_empty()); assert!(!BitBoard(0xFF).is_empty()); } #[test] fn has_piece_at() { let bb = BitBoard(0b1001100); assert!(bb.is_set(Square::C1)); assert!(!bb.is_set(Square::B1)); } #[test] fn set_square() { let sq = Square::E4; let mut bb = BitBoard(0b1001100); bb.set_square(sq); assert!(bb.is_set(sq)); } #[test] fn clear_square() { let sq = Square::A3; let mut bb = BitBoard(0b1001100); bb.clear_square(sq); assert!(!bb.is_set(sq)); } #[test] fn single_rank_occupancy() { let bb = BitBoard(0b01010100); let expected_squares = [Square::G1, Square::E1, Square::C1]; for (a, b) in bb.occupied_squares().zip(expected_squares.iter().cloned()) { assert_eq!(a, b); } } #[test] fn occupancy_spot_check() { let bb = BitBoard(0b10000000_00000000_00100000_00000100_00000000_00000000_00010000_00001000); let expected_squares = [Square::H8, Square::F6, Square::C5, Square::E2, Square::D1]; for (a, b) in bb.occupied_squares().zip(expected_squares.iter().cloned()) { assert_eq!(a, b); } } #[test] fn xor() { let a = bitboard![C5 G7]; let b = bitboard![B5 G7 H3]; assert_eq!(a ^ b, bitboard![B5 C5 H3]); assert_eq!(a ^ BitBoard::empty(), a); assert_eq!(BitBoard::empty() ^ BitBoard::empty(), BitBoard::empty()); } #[test] fn bitand_assign() { let mut a = bitboard![C5 G7]; let b = bitboard![B5 G7 H3]; a &= b; assert_eq!(a, bitboard![G7]); } #[test] fn bitor_assign() { let mut a = bitboard![C5 G7]; let b = bitboard![B5 G7 H3]; a |= b; assert_eq!(a, bitboard![B5 C5 G7 H3]); } #[test] fn from_square() { assert_eq!(BitBoard::from(Square::A1), BitBoard(0b1)); assert_eq!(BitBoard::from(Square::H8), BitBoard(1 << 63)); } #[test] fn first_occupied_squares() { let bb = bitboard![A8 E1]; assert_eq!(bb.first_occupied_square(), Some(Square::A8)); assert_eq!(bb.first_occupied_square_trailing(), Some(Square::E1)); let bb = bitboard![D6 E7 F8]; assert_eq!(bb.first_occupied_square_trailing(), Some(Square::D6)); } }