// Eryn Wells use super::library::{library, FILES, RANKS}; use super::LeadingBitScanner; use crate::{square::Direction, Square}; use std::fmt; use std::ops::Not; #[derive(Clone, Copy, Eq, Hash, PartialEq)] pub(crate) struct BitBoard(pub(super) u64); macro_rules! moves_getter { ($getter_name:ident) => { pub fn $getter_name(sq: Square) -> BitBoard { library().$getter_name(sq) } }; } impl BitBoard { pub const fn empty() -> BitBoard { BitBoard(0) } pub fn new(bits: u64) -> BitBoard { BitBoard(bits) } pub fn rank(rank: usize) -> BitBoard { assert!(rank < 8); RANKS[rank] } pub fn file(file: usize) -> BitBoard { assert!(file < 8); FILES[file] } pub fn ray(sq: Square, dir: Direction) -> BitBoard { library().ray(sq, dir) } moves_getter!(knight_moves); moves_getter!(bishop_moves); moves_getter!(rook_moves); moves_getter!(queen_moves); moves_getter!(king_moves); } impl BitBoard { pub fn is_empty(&self) -> bool { self.0 == 0 } pub fn is_set(self, sq: Square) -> bool { !(self & &sq.into()).is_empty() } pub fn set_square(&mut self, sq: Square) { let sq_bb: BitBoard = sq.into(); *self |= sq_bb } fn clear_square(&mut self, sq: Square) { let sq_bb: BitBoard = sq.into(); *self &= !sq_bb } } impl BitBoard { /// Return an Iterator over the occupied squares, starting from the leading /// (most-significant bit) end of the field. pub(crate) fn occupied_squares(&self) -> impl Iterator { LeadingBitScanner::new(self.0).map(Square::from_index) } /// Return an Iterator over the occupied squares, starting from the trailing /// (least-significant bit) end of the field. pub(crate) fn occupied_squares_trailing(&self) -> impl Iterator { LeadingBitScanner::new(self.0).map(Square::from_index) } } impl Default for BitBoard { fn default() -> Self { BitBoard::empty() } } impl From for BitBoard { fn from(value: Square) -> Self { BitBoard(1 << value as u64) } } impl FromIterator for BitBoard { fn from_iter>(iter: T) -> Self { let mut builder = BitBoardBuilder::empty(); for sq in iter { builder = builder.square(sq) } builder.build() } } impl fmt::Binary for BitBoard { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // Delegate to u64's implementation of Binary. fmt::Binary::fmt(&self.0, f) } } impl fmt::LowerHex for BitBoard { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // Delegate to u64's implementation of LowerHex. fmt::LowerHex::fmt(&self.0, f) } } impl fmt::UpperHex for BitBoard { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // Delegate to u64's implementation of UpperHex. fmt::UpperHex::fmt(&self.0, f) } } impl fmt::Display for BitBoard { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let binary_ranks = format!("{:064b}", self.0) .chars() .rev() .map(|c| String::from(c)) .collect::>(); let mut ranks_written = 0; for rank in binary_ranks.chunks(8).rev() { let joined_rank = rank.join(" "); write!(f, "{}", joined_rank)?; ranks_written += 1; if ranks_written < 8 { write!(f, "\n")?; } } Ok(()) } } impl fmt::Debug for BitBoard { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> { write!(f, "BitBoard({:064b})", self.0) } } macro_rules! infix_op { ($trait_type:ident, $func_name:ident, $type:ty) => { infix_op!($trait_type, $func_name, $type, $type); infix_op!($trait_type, $func_name, $type, &$type); infix_op!($trait_type, $func_name, &$type, $type); infix_op!($trait_type, $func_name, &$type, &$type); }; ($trait_type:ident, $func_name:ident, $left_type:ty, $right_type:ty) => { impl std::ops::$trait_type<$right_type> for $left_type { type Output = BitBoard; #[inline] fn $func_name(self, rhs: $right_type) -> Self::Output { BitBoard(std::ops::$trait_type::$func_name(self.0, rhs.0)) } } }; } macro_rules! assign_op { ($trait_type:ident, $func_name:ident, $type:ty) => { impl std::ops::$trait_type for $type { #[inline] fn $func_name(&mut self, rhs: $type) { std::ops::$trait_type::$func_name(&mut self.0, rhs.0) } } impl std::ops::$trait_type<&$type> for $type { #[inline] fn $func_name(&mut self, rhs: &$type) { std::ops::$trait_type::$func_name(&mut self.0, rhs.0) } } }; } infix_op!(BitAnd, bitand, BitBoard); infix_op!(BitOr, bitor, BitBoard); infix_op!(BitXor, bitxor, BitBoard); assign_op!(BitAndAssign, bitand_assign, BitBoard); assign_op!(BitOrAssign, bitor_assign, BitBoard); assign_op!(BitXorAssign, bitxor_assign, BitBoard); impl Not for BitBoard { type Output = BitBoard; #[inline] fn not(self) -> Self::Output { BitBoard(!self.0) } } impl Not for &BitBoard { type Output = BitBoard; #[inline] fn not(self) -> Self::Output { BitBoard(!self.0) } } pub struct BitBoardBuilder(BitBoard); impl BitBoardBuilder { pub const fn empty() -> BitBoardBuilder { BitBoardBuilder(BitBoard::empty()) } pub fn new(bits: u64) -> BitBoardBuilder { BitBoardBuilder(BitBoard::new(bits)) } pub fn square(mut self, square: Square) -> BitBoardBuilder { self.0.set_square(square); self } pub fn build(&self) -> BitBoard { self.0 } } #[cfg(test)] mod tests { use super::*; use crate::{bitboard, Square}; #[test] fn display_and_debug() { let bb = BitBoard::file(0) | BitBoard::file(3) | BitBoard::rank(7) | BitBoard::rank(4); println!("{}", &bb); } #[test] fn rank() { assert_eq!(BitBoard::rank(0).0, 0xFF, "Rank 1"); assert_eq!(BitBoard::rank(1).0, 0xFF00, "Rank 2"); assert_eq!(BitBoard::rank(2).0, 0xFF0000, "Rank 3"); assert_eq!(BitBoard::rank(3).0, 0xFF000000, "Rank 4"); assert_eq!(BitBoard::rank(4).0, 0xFF00000000, "Rank 5"); assert_eq!(BitBoard::rank(5).0, 0xFF0000000000, "Rank 6"); assert_eq!(BitBoard::rank(6).0, 0xFF000000000000, "Rank 7"); assert_eq!(BitBoard::rank(7).0, 0xFF00000000000000, "Rank 8"); } #[test] fn is_empty() { assert!(BitBoard(0).is_empty()); assert!(!BitBoard(0xFF).is_empty()); } #[test] fn has_piece_at() { let bb = BitBoard(0b1001100); assert!(bb.is_set(Square::C1)); assert!(!bb.is_set(Square::B1)); } #[test] fn set_square() { let sq = Square::E4; let mut bb = BitBoard(0b1001100); bb.set_square(sq); assert!(bb.is_set(sq)); } #[test] fn clear_square() { let sq = Square::A3; let mut bb = BitBoard(0b1001100); bb.clear_square(sq); assert!(!bb.is_set(sq)); } #[test] fn single_rank_occupancy() { let bb = BitBoard(0b01010100); let expected_squares = [Square::G1, Square::E1, Square::C1]; for (a, b) in bb.occupied_squares().zip(expected_squares.iter().cloned()) { assert_eq!(a, b); } } #[test] fn occupancy_spot_check() { let bb = BitBoard(0b10000000_00000000_00100000_00000100_00000000_00000000_00010000_00001000); let expected_squares = [Square::H8, Square::F6, Square::C5, Square::E2, Square::D1]; for (a, b) in bb.occupied_squares().zip(expected_squares.iter().cloned()) { assert_eq!(a, b); } } #[test] fn xor() { let a = bitboard![C5, G7]; let b = bitboard![B5, G7, H3]; assert_eq!(a ^ b, bitboard![B5, C5, H3]); assert_eq!(a ^ BitBoard::empty(), a); assert_eq!(BitBoard::empty() ^ BitBoard::empty(), BitBoard::empty()); } #[test] fn bitand_assign() { let mut a = bitboard![C5, G7]; let b = bitboard![B5, G7, H3]; a &= b; assert_eq!(a, bitboard![G7]); } #[test] fn bitor_assign() { let mut a = bitboard![C5, G7]; let b = bitboard![B5, G7, H3]; a |= b; assert_eq!(a, bitboard![B5, C5, G7, H3]); } }