chessfriend/bitboard/src/bitboard.rs

606 lines
18 KiB
Rust

// Eryn Wells <eryn@erynwells.me>
use crate::bit_scanner::{LeadingBitScanner, TrailingBitScanner};
use crate::direction::IterationDirection;
use crate::library;
use chessfriend_core::{Color, Direction, File, Rank, Square};
use forward_ref::{forward_ref_binop, forward_ref_op_assign, forward_ref_unop};
use std::fmt;
use std::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Not};
#[allow(clippy::cast_possible_truncation)]
const SQUARES_NUM: u8 = Square::NUM as u8;
/// A bitfield representation of a chess board that uses the bits of a 64-bit
/// unsigned integer to represent whether a square on the board is occupied.
/// Squares are laid out as follows, starting at the bottom left, going row-wise,
/// and ending at the top right corner:
///
/// ```text
/// +-------------------------+
/// 8 | 56 57 58 59 60 61 62 63 |
/// 7 | 48 49 50 51 52 53 54 55 |
/// 6 | 40 41 42 43 44 45 46 47 |
/// 5 | 32 33 34 35 36 37 38 39 |
/// 4 | 24 25 26 27 28 29 30 31 |
/// 3 | 16 17 18 19 20 21 22 23 |
/// 2 | 8 9 10 11 12 13 14 15 |
/// 1 | 0 1 2 3 4 5 6 7 |
/// +-------------------------+
/// A B C D E F G H
/// ```
///
#[must_use]
#[derive(Clone, Copy, Eq, Hash, PartialEq)]
pub struct BitBoard(pub(crate) u64);
macro_rules! moves_getter {
($getter_name:ident) => {
pub fn $getter_name(sq: Square) -> BitBoard {
library::library().$getter_name(sq)
}
};
}
impl BitBoard {
pub const EMPTY: BitBoard = BitBoard(u64::MIN);
pub const FULL: BitBoard = BitBoard(u64::MAX);
#[deprecated(note = "Use BitBoard::EMPTY instead")]
pub const fn empty() -> BitBoard {
Self::EMPTY
}
#[deprecated(note = "Use BitBoard::FULL instead")]
pub const fn full() -> BitBoard {
Self::FULL
}
pub const fn new(bits: u64) -> BitBoard {
BitBoard(bits)
}
pub const fn rank(rank: Rank) -> BitBoard {
library::RANKS[rank.as_index()]
}
pub const fn file(file: File) -> BitBoard {
library::FILES[file.as_index()]
}
pub fn ray(sq: Square, dir: Direction) -> BitBoard {
library::library().ray(sq, dir)
}
pub fn pawn_attacks(sq: Square, color: Color) -> BitBoard {
library::library().pawn_attacks(sq, color)
}
pub fn pawn_pushes(sq: Square, color: Color) -> BitBoard {
library::library().pawn_pushes(sq, color)
}
moves_getter!(knight_moves);
moves_getter!(bishop_moves);
moves_getter!(rook_moves);
moves_getter!(queen_moves);
moves_getter!(king_moves);
pub const fn kingside(color: Color) -> &'static BitBoard {
&library::KINGSIDES[color as usize]
}
pub const fn queenside(color: Color) -> &'static BitBoard {
&library::QUEENSIDES[color as usize]
}
}
impl BitBoard {
/// Converts this [`BitBoard`] to an unsigned 64-bit integer.
#[must_use]
pub const fn as_bits(&self) -> u64 {
self.0
}
/// Returns `true` if this [`BitBoard`] has no bits set. This is the opposite
/// of [`BitBoard::is_populated`].
///
/// ## Examples
///
/// ```
/// use chessfriend_bitboard::BitBoard;
/// assert!(BitBoard::empty().is_empty());
/// assert!(!BitBoard::full().is_empty());
/// assert!(!BitBoard::new(0b1000).is_empty());
/// ```
#[must_use]
pub const fn is_empty(&self) -> bool {
self.0 == 0
}
/// Returns `true` if the [`BitBoard`] has at least one bit set. This is the
/// opposite of [`BitBoard::is_empty`].
///
/// ## Examples
///
/// ```
/// use chessfriend_bitboard::BitBoard;
/// assert!(!BitBoard::empty().is_populated());
/// assert!(BitBoard::full().is_populated());
/// assert!(BitBoard::new(0b1).is_populated());
/// ```
#[must_use]
pub const fn is_populated(&self) -> bool {
self.0 != 0
}
/// Returns `true` if this [`BitBoard`] has the bit corresponding to `square` set.
///
/// ## Examples
///
/// ```
/// use chessfriend_bitboard::BitBoard;
/// use chessfriend_core::Square;
///
/// let square = Square::E4;
/// let mut bitboard = BitBoard::new(0b1001100);
///
/// assert!(bitboard.contains(Square::C1));
/// assert!(!bitboard.contains(Square::B1));
/// ```
#[must_use]
pub fn contains(self, square: Square) -> bool {
let square_bitboard: BitBoard = square.into();
!(self & square_bitboard).is_empty()
}
/// Counts the number of set squares (1 bits) in this [`BitBoard`].
///
/// ## Examples
///
/// ```
/// use chessfriend_bitboard::BitBoard;
/// assert_eq!(BitBoard::EMPTY.population_count(), 0);
/// assert_eq!(BitBoard::new(0b01011110010).population_count(), 6);
/// assert_eq!(BitBoard::FULL.population_count(), 64);
/// ```
#[must_use]
pub const fn population_count(&self) -> u32 {
self.0.count_ones()
}
/// Set a square in this [`BitBoard`] by toggling the corresponding bit to 1.
/// This always succeeds, even if the bit was already set.
///
/// ## Examples
///
/// ```
/// use chessfriend_bitboard::BitBoard;
/// use chessfriend_core::Square;
///
/// let mut bitboard = BitBoard::new(0b1001100);
/// bitboard.set(Square::E4);
/// assert!(bitboard.contains(Square::E4));
/// ```
pub fn set(&mut self, square: Square) {
let square_bitboard: BitBoard = square.into();
self.0 |= square_bitboard.0;
}
/// Clear a square (set it to 0) in this [`BitBoard`]. This always succeeds
/// even if the bit is not set.
///
/// ## Examples
///
/// ```
/// use chessfriend_bitboard::BitBoard;
/// use chessfriend_core::Square;
///
/// let mut bitboard = BitBoard::new(0b1001100);
/// bitboard.clear(Square::C1);
/// assert!(!bitboard.contains(Square::C1));
/// ```
pub fn clear(&mut self, square: Square) {
let square_bitboard: BitBoard = square.into();
self.0 &= !square_bitboard.0;
}
/// Returns `true` if this [`BitBoard`] represents a single square.
///
/// ## Examples
///
/// ```
/// use chessfriend_bitboard::BitBoard;
/// assert!(!BitBoard::EMPTY.is_single_square(), "Empty bitboards represent no squares");
/// assert!(!BitBoard::FULL.is_single_square(), "Full bitboards represent all the squares");
/// assert!(!BitBoard::new(0b010011110101101100).is_single_square(), "This bitboard represents a bunch of squares");
/// assert!(BitBoard::new(0b10000000000000).is_single_square());
/// ```
#[must_use]
pub fn is_single_square(&self) -> bool {
self.0.is_power_of_two()
}
/// Return an Iterator over the occupied squares.
#[must_use]
pub fn occupied_squares(
&self,
direction: &IterationDirection,
) -> Box<dyn Iterator<Item = Square>> {
match direction {
IterationDirection::Leading => Box::new(self.occupied_squares_leading()),
IterationDirection::Trailing => Box::new(self.occupied_squares_trailing()),
}
}
/// Iterate through the occupied squares in a direction specified by a
/// compass direction. This method is mose useful for bitboards of slider
/// rays so that iteration proceeds in order along the ray's direction.
///
/// ## Examples
///
/// ```
/// use chessfriend_bitboard::BitBoard;
/// use chessfriend_core::{Direction, Square};
///
/// let ray = BitBoard::ray(Square::E4, Direction::North);
/// assert_eq!(
/// ray.occupied_squares_direction(Direction::North).collect::<Vec<Square>>(),
/// vec![Square::E5, Square::E6, Square::E7, Square::E8]
/// );
/// ```
///
#[must_use]
pub fn occupied_squares_direction(
&self,
direction: Direction,
) -> Box<dyn Iterator<Item = Square>> {
match direction {
Direction::North | Direction::NorthEast | Direction::NorthWest | Direction::East => {
Box::new(self.occupied_squares_trailing())
}
Direction::SouthEast | Direction::South | Direction::SouthWest | Direction::West => {
Box::new(self.occupied_squares_leading())
}
}
}
#[must_use]
pub fn occupied_squares_leading(&self) -> LeadingBitScanner {
LeadingBitScanner::new(self.0)
}
#[must_use]
pub fn occupied_squares_trailing(&self) -> TrailingBitScanner {
TrailingBitScanner::new(self.0)
}
#[must_use]
pub fn first_occupied_square_direction(&self, direction: Direction) -> Option<Square> {
match direction {
Direction::North | Direction::NorthEast | Direction::NorthWest | Direction::East => {
self.first_occupied_square_trailing()
}
Direction::SouthEast | Direction::South | Direction::SouthWest | Direction::West => {
self.first_occupied_square_leading()
}
}
}
/// Get the first occupied square in the given direction.
///
/// ## To-Do
///
/// - Take `direction` by value instead of reference
///
#[must_use]
pub fn first_occupied_square(&self, direction: &IterationDirection) -> Option<Square> {
match direction {
IterationDirection::Leading => self.first_occupied_square_leading(),
IterationDirection::Trailing => self.first_occupied_square_trailing(),
}
}
/// If the board is not empty, returns the first occupied square on the
/// board, starting at the leading (most-significant) end of the board. If
/// the board is empty, returns `None`.
#[must_use]
pub fn first_occupied_square_leading(self) -> Option<Square> {
let leading_zeros = self.leading_zeros();
if leading_zeros < SQUARES_NUM {
unsafe {
Some(Square::from_index_unchecked(
SQUARES_NUM - leading_zeros - 1,
))
}
} else {
None
}
}
/// If the board is not empty, returns the first occupied square on the
/// board, starting at the trailing (least-significant) end of the board.
/// If the board is empty, returns `None`.
#[must_use]
pub fn first_occupied_square_trailing(self) -> Option<Square> {
let trailing_zeros = self.trailing_zeros();
if trailing_zeros < SQUARES_NUM {
unsafe { Some(Square::from_index_unchecked(trailing_zeros)) }
} else {
None
}
}
}
impl BitBoard {
#[must_use]
#[allow(clippy::cast_possible_truncation)]
fn leading_zeros(self) -> u8 {
self.0.leading_zeros() as u8
}
#[must_use]
#[allow(clippy::cast_possible_truncation)]
fn trailing_zeros(self) -> u8 {
self.0.trailing_zeros() as u8
}
}
impl Default for BitBoard {
fn default() -> Self {
BitBoard::EMPTY
}
}
impl From<BitBoard> for u64 {
fn from(value: BitBoard) -> Self {
value.as_bits()
}
}
impl From<File> for BitBoard {
fn from(value: File) -> Self {
library::FILES[value.as_index()]
}
}
impl From<Option<Square>> for BitBoard {
fn from(value: Option<Square>) -> Self {
value.map_or(BitBoard::EMPTY, Into::<BitBoard>::into)
}
}
impl From<Rank> for BitBoard {
fn from(value: Rank) -> Self {
library::FILES[value.as_index()]
}
}
impl From<Square> for BitBoard {
fn from(value: Square) -> Self {
BitBoard(1u64 << value as u32)
}
}
impl FromIterator<Square> for BitBoard {
fn from_iter<T: IntoIterator<Item = Square>>(iter: T) -> Self {
iter.into_iter().fold(BitBoard::EMPTY, |mut acc, sq| {
acc.set(sq);
acc
})
}
}
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum TryFromBitBoardError {
NotSingleSquare,
}
impl TryFrom<BitBoard> for Square {
type Error = TryFromBitBoardError;
fn try_from(value: BitBoard) -> Result<Self, Self::Error> {
if !value.is_single_square() {
return Err(TryFromBitBoardError::NotSingleSquare);
}
unsafe { Ok(Square::from_index_unchecked(value.trailing_zeros())) }
}
}
impl fmt::Binary for BitBoard {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Delegate to u64's implementation of Binary.
fmt::Binary::fmt(&self.0, f)
}
}
impl fmt::LowerHex for BitBoard {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Delegate to u64's implementation of LowerHex.
fmt::LowerHex::fmt(&self.0, f)
}
}
impl fmt::UpperHex for BitBoard {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Delegate to u64's implementation of UpperHex.
fmt::UpperHex::fmt(&self.0, f)
}
}
impl fmt::Display for BitBoard {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let binary_ranks = format!("{:064b}", self.0)
.chars()
.rev()
.map(String::from)
.collect::<Vec<String>>();
let mut ranks_written = 0;
for rank in binary_ranks.chunks(8).rev() {
write!(f, "{}", rank.join(" "))?;
ranks_written += 1;
if ranks_written < 8 {
writeln!(f)?;
}
}
Ok(())
}
}
impl fmt::Debug for BitBoard {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
write!(f, "BitBoard({:064b})", self.0)
}
}
macro_rules! infix_op {
($trait_type:ident, $func_name:ident, $left_type:ty, $right_type:ty) => {
impl std::ops::$trait_type<$right_type> for $left_type {
type Output = Self;
#[inline]
fn $func_name(self, rhs: $right_type) -> Self::Output {
BitBoard(std::ops::$trait_type::$func_name(self.0, rhs.0))
}
}
forward_ref_binop!(impl $trait_type, $func_name for $left_type, $right_type);
};
}
macro_rules! assign_op {
($trait_type:ident, $func_name:ident, $type:ty) => {
impl $trait_type for $type {
#[inline]
fn $func_name(&mut self, rhs: $type) {
$trait_type::$func_name(&mut self.0, rhs.0)
}
}
forward_ref_op_assign!(impl $trait_type, $func_name for $type, $type);
};
}
infix_op!(BitAnd, bitand, BitBoard, BitBoard);
infix_op!(BitOr, bitor, BitBoard, BitBoard);
infix_op!(BitXor, bitxor, BitBoard, BitBoard);
assign_op!(BitAndAssign, bitand_assign, BitBoard);
assign_op!(BitOrAssign, bitor_assign, BitBoard);
assign_op!(BitXorAssign, bitxor_assign, BitBoard);
impl Not for BitBoard {
type Output = Self;
#[inline]
fn not(self) -> Self::Output {
BitBoard(!self.0)
}
}
forward_ref_unop!(impl Not, not for BitBoard);
#[cfg(test)]
mod tests {
use super::*;
use crate::bitboard;
use chessfriend_core::Square;
#[test]
#[ignore]
fn display_and_debug() {
let bb = BitBoard::file(File::A)
| BitBoard::file(File::D)
| BitBoard::rank(Rank::FIVE)
| BitBoard::rank(Rank::EIGHT);
println!("{}", &bb);
}
#[test]
#[allow(clippy::unreadable_literal)]
fn rank() {
assert_eq!(BitBoard::rank(Rank::ONE).0, 0xFF, "Rank 1");
assert_eq!(BitBoard::rank(Rank::TWO).0, 0xFF00, "Rank 2");
assert_eq!(BitBoard::rank(Rank::THREE).0, 0xFF0000, "Rank 3");
assert_eq!(BitBoard::rank(Rank::FOUR).0, 0xFF000000, "Rank 4");
assert_eq!(BitBoard::rank(Rank::FIVE).0, 0xFF00000000, "Rank 5");
assert_eq!(BitBoard::rank(Rank::SIX).0, 0xFF0000000000, "Rank 6");
assert_eq!(BitBoard::rank(Rank::SEVEN).0, 0xFF000000000000, "Rank 7");
assert_eq!(BitBoard::rank(Rank::EIGHT).0, 0xFF00000000000000, "Rank 8");
}
#[test]
fn single_rank_occupancy() {
#[allow(clippy::unreadable_literal)]
let bb = BitBoard(0b01010100);
let expected_squares = [Square::G1, Square::E1, Square::C1];
bb.occupied_squares(&IterationDirection::Leading)
.zip(expected_squares)
.for_each(|(a, b)| assert_eq!(a, b));
}
#[test]
fn occupancy_spot_check() {
#[allow(clippy::unreadable_literal)]
let bb =
BitBoard(0b10000000_00000000_00100000_00000100_00000000_00000000_00010000_00001000);
let expected_squares = [Square::H8, Square::F6, Square::C5, Square::E2, Square::D1];
bb.occupied_squares(&IterationDirection::Leading)
.zip(expected_squares)
.for_each(|(a, b)| assert_eq!(a, b));
}
#[test]
fn xor() {
let a = bitboard![C5 G7];
let b = bitboard![B5 G7 H3];
assert_eq!(a ^ b, bitboard![B5 C5 H3]);
assert_eq!(a ^ BitBoard::empty(), a);
assert_eq!(BitBoard::empty() ^ BitBoard::empty(), BitBoard::empty());
}
#[test]
fn bitand_assign() {
let mut a = bitboard![C5 G7];
let b = bitboard![B5 G7 H3];
a &= b;
assert_eq!(a, bitboard![G7]);
}
#[test]
fn bitor_assign() {
let mut a = bitboard![C5 G7];
let b = bitboard![B5 G7 H3];
a |= b;
assert_eq!(a, bitboard![B5 C5 G7 H3]);
}
#[test]
fn from_square() {
assert_eq!(BitBoard::from(Square::A1), BitBoard(0b1));
assert_eq!(BitBoard::from(Square::H8), BitBoard(1 << 63));
}
#[test]
fn first_occupied_squares() {
let bb = bitboard![A8 E1];
assert_eq!(bb.first_occupied_square_leading(), Some(Square::A8));
assert_eq!(bb.first_occupied_square_trailing(), Some(Square::E1));
let bb = bitboard![D6 E7 F8];
assert_eq!(bb.first_occupied_square_trailing(), Some(Square::D6));
}
}