going-rogue/erynrl/map/generator/room.py
Eryn Wells 635aea5e3b Add cellular atomata to the map generator finally!
Use the new map generator mechanism to generate rooms via cellular
atomata. Create a new CellularAtomatonRoomMethod class that uses
the Cellular Atomton class to create a room. Add a FreefromRoom class
that draws a room based on an ndarray of tiles.

Along the way I discovered I have misunderstood how numpy arrays
organize rows and columns. The numpy array creation routines take an
'order' argument that specifies whether arrays should be in C order (row
major) or Fortran order (column major). Fortran order lets you index
arrays with a more natural [x, y] coordinate order, and that's what the
tutorials I've read have shown. So I've been using that. When I was
developing the Cellular Atomaton, I wrote some code that assumed row-
major order. I think I want to move everything to row-major / C-style,
but that will take a bit more time.
2023-03-05 18:40:02 -08:00

385 lines
13 KiB
Python

# Eryn Wells <eryn@erynwells.me>
import math
import random
from dataclasses import dataclass
from typing import Iterable, Iterator, List, Optional, Tuple, TYPE_CHECKING
import numpy as np
import tcod
from ... import log
from ...geometry import Point, Rect, Size
from ..room import FreeformRoom, RectangularRoom, Room
from ..tile import Empty, Floor, StairsDown, StairsUp, Wall, tile_datatype
from .cellular_atomata import CellularAtomataMapGenerator
if TYPE_CHECKING:
from .. import Map
class RoomGenerator:
'''Abstract room generator class.'''
@dataclass
class Configuration:
rect_method: 'RectMethod'
room_method: 'RoomMethod'
def __init__(self, *, size: Size, config: Configuration):
self.size = size
self.configuration = config
self.rooms: List[Room] = []
self.up_stairs: List[Point] = []
self.down_stairs: List[Point] = []
def generate(self):
'''Generate rooms and stairs'''
rect_method = self.configuration.rect_method
room_method = self.configuration.room_method
for rect in rect_method.generate():
room = room_method.room_in_rect(rect)
if not room:
break
self.rooms.append(room)
if len(self.rooms) == 0:
return
self._generate_stairs()
# pylint: disable=redefined-builtin
def apply(self, map: 'Map'):
'''Apply the generated rooms to a tile array'''
self._apply(map)
self._apply_stairs(map.tiles)
def _apply(self, map: 'Map'):
'''
Apply the generated list of rooms to an array of tiles. Subclasses must implement this.
Arguments
---------
map: Map
The game map to apply the generated room to
'''
tiles = map.tiles
for room in self.rooms:
for pt in room.floor_points:
tiles[pt.numpy_index] = Floor
for room in self.rooms:
for pt in room.wall_points:
idx = pt.numpy_index
if tiles[idx] != Empty:
continue
tiles[idx] = Wall
def _generate_stairs(self):
up_stair_room = random.choice(self.rooms)
down_stair_room = None
if len(self.rooms) >= 2:
while down_stair_room is None or down_stair_room == up_stair_room:
down_stair_room = random.choice(self.rooms)
else:
down_stair_room = up_stair_room
self.up_stairs.append(random.choice(list(up_stair_room.walkable_tiles)))
self.down_stairs.append(random.choice(list(down_stair_room.walkable_tiles)))
def _apply_stairs(self, tiles):
for pt in self.up_stairs:
tiles[pt.numpy_index] = StairsUp
for pt in self.down_stairs:
tiles[pt.numpy_index] = StairsDown
class RectMethod:
'''An abstract class defining a method for generating rooms.'''
def __init__(self, *, size: Size):
self.size = size
def generate(self) -> Iterator[Rect]:
'''Generate rects to place rooms in until there are no more.'''
raise NotImplementedError()
class OneBigRoomRectMethod(RectMethod):
'''
A room generator method that yields one large rectangle centered in the
bounds defined by the zero origin and `self.size`.
'''
@dataclass
class Configuration:
'''
Configuration for a OneBigRoom room generator method.
### Attributes
width_percentage : float
The percentage of overall width to make the room
height_percentage : float
The percentage of overall height to make the room
'''
width_percentage: float = 0.5
height_percentage: float = 0.5
def __init__(self, *, size: Size, config: Optional[Configuration] = None):
super().__init__(size=size)
self.configuration = config or self.__class__.Configuration()
def generate(self) -> Iterator[Rect]:
width = self.size.width
height = self.size.height
size = Size(math.floor(width * self.configuration.width_percentage),
math.floor(height * self.configuration.height_percentage))
origin = Point((width - size.width) // 2, (height - size.height) // 2)
yield Rect(origin, size)
class RandomRectMethod(RectMethod):
NUMBER_OF_ATTEMPTS_PER_RECT = 30
@dataclass
class Configuration:
number_of_rooms: int = 30
minimum_room_size: Size = Size(7, 7)
maximum_room_size: Size = Size(20, 20)
def __init__(self, *, size: Size, config: Optional[Configuration] = None):
super().__init__(size=size)
self.configuration = config or self.__class__.Configuration()
self._rects: List[Rect] = []
def generate(self) -> Iterator[Rect]:
minimum_room_size = self.configuration.minimum_room_size
maximum_room_size = self.configuration.maximum_room_size
width_range = (minimum_room_size.width, maximum_room_size.width)
height_range = (minimum_room_size.height, maximum_room_size.height)
while len(self._rects) < self.configuration.number_of_rooms:
for _ in range(self.__class__.NUMBER_OF_ATTEMPTS_PER_RECT):
size = Size(random.randint(*width_range), random.randint(*height_range))
origin = Point(random.randint(0, self.size.width - size.width),
random.randint(0, self.size.height - size.height))
candidate_rect = Rect(origin, size)
overlaps_any_existing_room = any(candidate_rect.intersects(r) for r in self._rects)
if not overlaps_any_existing_room:
break
else:
return
self._rects.append(candidate_rect)
yield candidate_rect
class RoomMethod:
'''An abstract class defining a method for generating rooms.'''
def room_in_rect(self, rect: Rect) -> Optional[Room]:
'''Create a Room inside the given Rect.'''
raise NotImplementedError()
class RectangularRoomMethod(RoomMethod):
def room_in_rect(self, rect: Rect) -> Optional[Room]:
return RectangularRoom(rect)
class CellularAtomatonRoomMethod(RoomMethod):
def __init__(self, cellular_atomaton_config: CellularAtomataMapGenerator.Configuration):
self.cellular_atomaton_configuration = cellular_atomaton_config
def room_in_rect(self, rect: Rect) -> Optional[Room]:
# The cellular atomaton doesn't generate any walls, just floors and
# emptiness. Inset it by 1 all the way around so that we can draw walls
# around it.
atomaton_rect = rect.inset_rect(1, 1, 1, 1)
room_generator = CellularAtomataMapGenerator(atomaton_rect, self.cellular_atomaton_configuration)
room_generator.generate()
# Create a new tile array and copy the result of the atomaton into it,
# then draw walls everywhere that neighbors a floor tile.
width = rect.width
height = rect.height
room_tiles = np.full((height, width), fill_value=Empty, dtype=tile_datatype, order='C')
room_tiles[1:height - 1, 1:width - 1] = room_generator.tiles
for y, x in np.ndindex(room_tiles.shape):
if room_tiles[y, x] == Floor:
continue
for neighbor in Point(x, y).neighbors:
try:
if room_tiles[neighbor.y, neighbor.x] != Floor:
continue
room_tiles[y, x] = Wall
break
except IndexError:
pass
return FreeformRoom(rect, room_tiles)
class OrRoomMethod(RoomMethod):
'''
A room generator method that picks between several RoomMethods at random
based on a set of probabilities.
'''
def __init__(self, methods: Iterable[Tuple[float, RoomMethod]]):
assert sum(m[0] for m in methods) == 1.0
self.methods = methods
def room_in_rect(self, rect: Rect) -> Optional[Room]:
factor = random.random()
threshold = 0
for method in self.methods:
threshold += method[0]
if factor <= threshold:
return method[1].room_in_rect(rect)
return None
class RandomRectRoomGenerator(RoomGenerator):
'''Generate rooms by repeatedly attempting to place rects of random size across the map.'''
NUMBER_OF_ATTEMPTS_PER_ROOM = 30
def _generate(self) -> bool:
number_of_attempts = 0
minimum_room_size = self.configuration.minimum_room_size
maximum_room_size = self.configuration.maximum_room_size
width_range = (minimum_room_size.width, maximum_room_size.width)
height_range = (minimum_room_size.height, maximum_room_size.height)
while len(self.rooms) < self.configuration.number_of_rooms:
size = Size(random.randint(*width_range), random.randint(*height_range))
origin = Point(random.randint(0, self.size.width - size.width),
random.randint(0, self.size.height - size.height))
candidate_room_rect = Rect(origin, size)
overlaps_any_existing_room = any(candidate_room_rect.intersects(room.bounds) for room in self.rooms)
if not overlaps_any_existing_room:
self.rooms.append(RectangularRoom(candidate_room_rect))
number_of_attempts = 0
continue
number_of_attempts += 1
if number_of_attempts > RandomRectRoomGenerator.NUMBER_OF_ATTEMPTS_PER_ROOM:
break
return True
class BSPRoomGenerator(RoomGenerator):
'''Generate a rooms-and-corridors style map with BSP.'''
def __init__(self, *, size: Size, config: Optional[RoomGenerator.Configuration] = None):
super().__init__(size=size, config=config)
self.rng: tcod.random.Random = tcod.random.Random()
def _generate(self) -> bool:
if self.rooms:
return True
minimum_room_size = self.configuration.minimum_room_size
maximum_room_size = self.configuration.maximum_room_size
# Recursively divide the map into squares of various sizes to place rooms in.
bsp = tcod.bsp.BSP(x=0, y=0, width=self.size.width, height=self.size.height)
# Add 2 to the minimum width and height to account for walls
bsp.split_recursive(
depth=4,
min_width=minimum_room_size.width,
min_height=minimum_room_size.height,
max_horizontal_ratio=1.1,
max_vertical_ratio=1.1)
# Generate the rooms
rooms: List[Room] = []
room_attrname = f'{__class__.__name__}.room'
for node in bsp.post_order():
node_bounds = self.__rect_from_bsp_node(node)
if node.children:
continue
log.MAP.debug('%s (room) %s', node_bounds, node)
# Generate a room size between minimum_room_size and maximum_room_size. The minimum value is
# straight-forward, but the maximum value needs to be clamped between minimum_room_size and the size of
# the node.
width_range = (
minimum_room_size.width,
min(maximum_room_size.width, max(
minimum_room_size.width, node.width - 2))
)
height_range = (
minimum_room_size.height,
min(maximum_room_size.height, max(
minimum_room_size.height, node.height - 2))
)
log.MAP.debug('|-> min room size %s', minimum_room_size)
log.MAP.debug('|-> max room size %s', maximum_room_size)
log.MAP.debug('|-> node size %s x %s', node.width, node.height)
log.MAP.debug('|-> width range %s', width_range)
log.MAP.debug('|-> height range %s', width_range)
size = Size(self.rng.randint(*width_range),
self.rng.randint(*height_range))
origin = Point(node.x + self.rng.randint(1, max(1, node.width - size.width - 2)),
node.y + self.rng.randint(1, max(1, node.height - size.height - 2)))
bounds = Rect(origin, size)
log.MAP.debug('`-> %s', bounds)
room = RectangularRoom(bounds)
setattr(node, room_attrname, room)
rooms.append(room)
if not hasattr(node.parent, room_attrname):
setattr(node.parent, room_attrname, room)
elif random.random() < 0.5:
setattr(node.parent, room_attrname, room)
# Pass up a random child room so that parent nodes can connect subtrees to each other.
parent = node.parent
if parent:
node_room = getattr(node, room_attrname)
if not hasattr(node.parent, room_attrname):
setattr(node.parent, room_attrname, node_room)
elif random.random() < 0.5:
setattr(node.parent, room_attrname, node_room)
self.rooms = rooms
return True
def __rect_from_bsp_node(self, node: tcod.bsp.BSP) -> Rect:
'''Create a Rect from the given BSP node object'''
return Rect(Point(node.x, node.y), Size(node.width, node.height))