Preparing Teensy 3.1 and CLI merge for DPH controller code.

This commit is contained in:
Jacob Alexander 2014-03-22 14:32:06 -07:00
parent ae738374ba
commit b2e237f368
7 changed files with 27 additions and 270 deletions

247
main.c
View file

@ -51,21 +51,6 @@
// ----- Function Declarations -----
void cliFunc_distRead ( char* args );
void cliFunc_free ( char* args );
void cliFunc_gaugeHelp ( char* args );
void cliFunc_single ( char* args );
void cliFunc_start ( char* args );
void cliFunc_stop ( char* args );
void cliFunc_zeroForce ( char* args );
void cliFunc_zeroPosition( char* args );
char receiveUART0Char();
void transmitUART0String( char* str );
uint32_t readDistanceGauge();
// ----- Variables -----
@ -188,7 +173,7 @@ int main(void)
continue;
// Send USB Data
usb_send();
output_send();
// Clear sendKeypresses Flag
sendKeypresses = 0;
@ -233,234 +218,4 @@ void pit0_isr(void)
// ----- CLI Command Functions -----
uint32_t readDistanceGauge()
{
// Setup distance read parameters for iGaging Distance Scale
// freq = 9kHz
// duty_cycle = 20%
// high_delay = (1/freq) * (duty_cycle/100)
// low_delay = (1/freq) * ((100-duty_cycle)/100)
uint8_t bits = 21; // 21 clock pulses, for 21 bits
uint32_t high_delay = 22; // Clock high time per pulse
uint32_t low_delay = 89; // Clock low time per pulse
// Data
uint32_t distInput = 0;
// Make sure clock is low initially
GPIOC_PCOR |= (1<<2); // Set Clock low
// Scan each of the bits
for ( uint8_t bit = 0; bit < bits; bit++ )
{
// Begin clock pulse
GPIOC_PSOR |= (1<<2); // Set Clock high
// Delay for duty cycle
delayMicroseconds( high_delay );
// End clock pulse
GPIOC_PCOR |= (1<<2); // Set Clock low
// Read Data Bit
distInput |= GPIOC_PDIR & (1<<1) ? (1 << bit) : 0;
// Delay for duty cycle
delayMicroseconds( low_delay );
}
return distInput;
}
void cliFunc_distRead( char* args )
{
// Parse number from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
argumentIsolation_cli( args, &arg1Ptr, &arg2Ptr );
// Convert the argument into an int
int read_count = decToInt( arg1Ptr ) + 1;
// If no argument specified, default to 1 read
if ( *arg1Ptr == '\0' )
{
read_count = 2;
}
// Repeat reading as many times as specified in the argument
print( NL );
while ( --read_count > 0 )
{
// Prepare to print output
info_msg("Distance: ");
// Data
uint32_t distInput = readDistanceGauge() - distanceOffset;
// Output result
printInt32( distInput );
// Convert to mm
// As per http://www.shumatech.com/web/21bit_protocol?page=0,1
// 21 bits is 2560 CPI (counts per inch) (C/inch)
// 1 inch is 25.4 mm
// 2560 / 25.4 = 100.7874016... CPMM (C/mm)
// Or
// 1 count is 1/2560 = 0.000390625... inches
// 1 count is (1/2560) * 25.4 = 0.00992187500000000 mm = 9.92187500000000 um = 9921.87500000000 nm
// Since there are 21 bits (2 097 152 positions) converting to um is possible by multiplying by 1000
// which is 2 097 152 000, and within 32 bits (4 294 967 295).
// However, um is still not convenient, so 64 bits (18 446 744 073 709 551 615) is a more accurate alternative.
// For each nm there are 2 097 152 000 000 positions.
// And for shits:
// mm is 2 097 152 : 0.009 921 875 000 mm : 32 bit
// um is 2 097 152 000 : 9.921 875 000 um : 32 bit (ideal acc. for 32 bit)
// nm is 2 097 152 000 000 : 9 921.875 000 nm : 64 bit
// pm is 2 097 152 000 000 000 : 9 921 875.000 pm : 64 bit (ideal acc. for 64 bit)
// XXX Apparently shumatech was sorta wrong about the 21 bits of usage
// Yes there are 21 bits, but the values only go from ~338 to ~30681 which is less than 16 bits...
// This means that the conversion at NM can use 32 bits :D
// It's been noted that the multiplier should be 100.6 (and that it could vary from scale to scale)
uint32_t distNM = distInput * 9921;;
uint32_t distUM = distNM / 1000;
uint32_t distMM = distUM / 1000;
print(" ");
printInt32( distMM );
print(" mm ");
printInt32( distUM );
print(" um ");
printInt32( distNM );
print(" nm ");
print( NL );
// Only delay if still counting
if ( read_count > 1 )
delay( 50 );
}
}
void cliFunc_free( char* args )
{
// Set the forceDistanceRead to 1, which will read until start has passed twice
forceDistanceRead = 1;
}
void cliFunc_gaugeHelp( char* args )
{
print( NL
"\033[1;32mForce Curve Gauge Help\033[0m" NL
" \033[1;33mUsage Overview\033[0m" NL
" TODO" NL
" \033[1;33mAdditional Command Details\033[0m" NL
" \033[1;35mdistRead\033[0m" NL
" Reads the current value from the distance gauge." NL
" If specified it will N repeated reads with a delay after each read. Useful for testing the distance gauge." NL
" e.g. \033[35mdistRead 250\033[0m" NL
" \033[1;35mfree\033[0m" NL
" Start free scanning force/distance reads." NL
" Will continue until the [start] distance point has been past twice." NL
" \033[1;35mimadaComm\033[0m" NL
" Sends a command to the Imada force gauge." NL
" e.g. \033[35mimadaComm D\033[0m" NL
" The commands supported by the gauge depends on the model. Listed below is for the DS2." NL
" K Select g units (default)" NL
" N Select N units" NL
" O Select oz units" NL
" P Select peak mode" NL
" T Select real time mode (default)" NL
" Z Zero out display/reading" NL
" Q Turn off power" NL
" E Read high/low set points" NL
" D Read data from force gauge" NL
" E\033[35mHHHHLLLL\033[0m" NL
" Set the high/low setpoints, ignore decimals" NL
" \033[35mHHHH\033[0m is 4 digit high, \033[35mLLLL\033[0m is 4 digit low" NL
" Responses from the above commands." NL
" R Command successful" NL
" E Error/Invalid Command" NL
" E\033[35mHHHHLLLL\033[0m" NL
" Current high/low setpoints" NL
" \033[35mHHHH\033[0m is 4 digit high, \033[35mLLLL\033[0m is 4 digit low" NL
" \033[35m[value][units][mode]\033[0m" NL
" Data read response" NL
" \033[35m[value]\033[0m is force currently showing on the display (peak or realtime)" NL
" \033[35m[units]\033[0m is the configured force units" NL
" \033[35m[mode]\033[0m is the current mode (peak or realtime)" NL
" \033[1;35mread\033[0m" NL
" Read the current force/distance value." NL
" If specified it will N repeated reads with a delay after each read." NL
" e.g. \033[35mread 125\033[0m" NL
" \033[1;35mstart\033[0m" NL
" Distance marker \033[35m[start]\033[0m for the start/end of a force curve measurement." NL
" While in free running mode, a special message is displayed when reaching the \033[35m[start]\033[0m point." NL
" \033[35m[start]\033[0m is defined by positioning the distance sensor at the position to start and running this command." NL
);
}
void cliFunc_read( char* args )
{
// Parse number from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
argumentIsolation_cli( args, &arg1Ptr, &arg2Ptr );
// Convert the argument into an int
int read_count = decToInt( arg1Ptr ) + 1;
// If no argument specified, default to 1 read
if ( *arg1Ptr == '\0' )
{
read_count = 2;
}
// Set the overall read count to read_count
forceDistanceReadCount = read_count;
}
void cliFunc_start( char* args )
{
// Read the current distance and set the new start/end position
distanceStart = readDistanceGauge();
print( NL );
info_msg("New start/end position: ");
printInt32( distanceStart - distanceOffset );
}
void cliFunc_stop( char* args )
{
// Reset the forceDistanceRead and forceDistanceReadCount
forceDistanceRead = 0;
forceDistanceReadCount = 0;
}
void cliFunc_zeroForce( char* args )
{
// Just use the imadaComm command sending the needed argument
char* commandArg = "Z";
imadaVerboseRead( commandArg );
}
void cliFunc_zeroPosition( char* args )
{
// Read the current distance and set the new offset
distanceOffset = readDistanceGauge();
print( NL );
info_msg("New distance offset: ");
printInt32( distanceOffset );
}