metaballs/MetaballsKit/Shaders/MarchingSquares.metal

125 lines
3.8 KiB
Metal

//
// MarchingSquares.metal
// Metaballs
//
// Created by Eryn Wells on 10/14/18.
// Copyright © 2018 Eryn Wells. All rights reserved.
//
#include <metal_stdlib>
#include "ShaderTypes.hh"
using namespace metal;
struct MarchingSquaresParameters {
/// Field size in pixels.
packed_uint2 pixelSize;
/// Field size in grid units.
packed_uint2 gridSize;
/// Size of a cell in pixels.
packed_uint2 cellSize;
/// Number of balls in the array above.
uint ballsCount;
};
struct Rect {
float4x4 transform;
float4 color;
};
struct RasterizerData {
float4 position [[position]];
float4 color;
float2 textureCoordinate;
int instance;
};
kernel void
generateGridGeometry()
{
}
/// Sample the field at regularly spaced intervals and populate `samples` with the resulting values.
kernel void
samplingKernel(constant MarchingSquaresParameters &parameters [[buffer(0)]],
constant Ball *balls [[buffer(1)]],
device float *samples [[buffer(2)]],
uint2 position [[thread_position_in_grid]])
{
if (position.x >= parameters.gridSize.x || position.y >= parameters.gridSize.y)
{
return;
}
// Find the midpoint of this grid cell.
const float2 point = float2(position.x * parameters.cellSize.x + (parameters.cellSize.x / 2.0),
position.y * parameters.cellSize.y + (parameters.cellSize.y / 2.0));
// Sample the grid.
float sample = 0.0;
for (uint i = 0; i < parameters.ballsCount; i++) {
constant Ball &ball = balls[i];
float r2 = ball.z * ball.z;
float xDiff = point.x - ball.x;
float yDiff = point.y - ball.y;
sample += r2 / ((xDiff * xDiff) + (yDiff * yDiff));
}
// Playing a bit fast and loose with these values here. The compute grid is the size of the grid itself, so parameters.gridSize == [[threads_per_grid]].
uint idx = position.y * parameters.gridSize.x + position.x;
samples[idx] = sample;
}
kernel void
contouringKernel(constant MarchingSquaresParameters &parameters [[buffer(0)]],
constant float *samples [[buffer(1)]],
device ushort *contourIndexes [[buffer(2)]],
uint2 position [[thread_position_in_grid]])
{
if (position.x >= (parameters.gridSize.x - 1) || position.y >= (parameters.gridSize.y - 1)) {
return;
}
// Calculate an index based on the samples at the four points around this cell.
// If the point is above the threshold, adjust the value accordingly.
// d--c 8--4
// | | -> | |
// a--b 1--2
uint rowSize = parameters.gridSize.x - 1;
uint d = position.y * rowSize + position.x;
uint c = d + 1;
uint b = d + rowSize + 1;
uint a = d + rowSize;
uint index = (samples[d] >= 1.0 ? 0b1000 : 0) +
(samples[c] >= 1.0 ? 0b0100 : 0) +
(samples[b] >= 1.0 ? 0b0010 : 0) +
(samples[a] >= 1.0 ? 0b0001 : 0);
contourIndexes[d] = index;
}
vertex RasterizerData
gridVertexShader(constant Vertex *vertexes [[buffer(0)]],
constant Rect *cells [[buffer(1)]],
constant RenderParameters &renderParameters [[buffer(2)]],
uint vid [[vertex_id]],
uint instid [[instance_id]])
{
Vertex v = vertexes[vid];
Rect cell = cells[instid];
RasterizerData out;
out.position = renderParameters.projection * cell.transform * float4(v.position.xy, 0, 1);
out.color = cell.color;
out.textureCoordinate = v.textureCoordinate;
out.instance = instid;
return out;
}
fragment float4
gridFragmentShader(RasterizerData in [[stage_in]],
constant ushort *contourIndexes [[buffer(0)]])
{
int instance = in.instance;
uint sample = contourIndexes[instance];
return sample >= 1 ? in.color : float4(0);
}