metaballs/MetaballsKit/MarchingSquares.swift

207 lines
7.6 KiB
Swift

//
// MarchingSquares.swift
// Metaballs
//
// Created by Eryn Wells on 10/11/18.
// Copyright © 2018 Eryn Wells. All rights reserved.
//
import Foundation
import Metal
import simd
class MarchingSquares {
private var field: Field
private var sampleGridSize = Size(16)
private var semaphore: DispatchSemaphore
private var samplingPipeline: MTLComputePipelineState?
private var contouringPipeline: MTLComputePipelineState?
private var parametersBuffer: MTLBuffer?
/// Samples of the field's current state.
private(set) var samplesBuffer: MTLBuffer?
/// Indexes of geometry to render.
private(set) var contourIndexesBuffer: MTLBuffer?
private(set) var gridGeometry: MTLBuffer?
private var xSamples: Int {
return Int(field.size.x / sampleGridSize.x)
}
private var ySamples: Int {
return Int(field.size.y / sampleGridSize.y)
}
private var lastSamplesCount = 0
var samplesCount: Int {
return xSamples * ySamples
}
var contourIndexesCount: Int {
return (xSamples - 1) * (ySamples - 1)
}
init(field: Field) {
self.field = field
semaphore = DispatchSemaphore(value: 1)
}
func setupMetal(withDevice device: MTLDevice, library: MTLLibrary) {
samplingPipeline = createComputePipeline(withFunctionNamed: "samplingKernel", device: device, library: library)
contouringPipeline = createComputePipeline(withFunctionNamed: "contouringKernel", device: device, library: library)
createParametersBuffer(withDevice: device)
createSamplesBuffer(withDevice: device)
createContourIndexesBuffer(withDevice: device)
}
func createComputePipeline(withFunctionNamed functionName: String, device: MTLDevice, library: MTLLibrary) -> MTLComputePipelineState? {
guard let function = library.makeFunction(name: functionName) else {
print("Couldn't get comput function \"\(functionName)\" from library")
return nil
}
do {
return try device.makeComputePipelineState(function: function)
} catch let e {
print("Error building compute pipeline state: \(e)")
return nil
}
}
func createParametersBuffer(withDevice device: MTLDevice) {
// TODO: I'm cheating on this cause I didn't want to make a parallel struct in Swift and deal with alignment crap. >_> I should make a real struct for this.
let parametersLength = MemoryLayout<packed_int2>.stride * 3 + MemoryLayout<uint>.stride
parametersBuffer = device.makeBuffer(length: parametersLength, options: .storageModeShared)
}
func createSamplesBuffer(withDevice device: MTLDevice) {
// Only reallocate the buffer if the length changed.
let samplesLength = MemoryLayout<Float>.stride * samplesCount
guard samplesBuffer?.length != samplesLength else {
return
}
samplesBuffer = device.makeBuffer(length: samplesLength, options: .storageModePrivate)
if samplesBuffer == nil {
fatalError("Couldn't create samplesBuffer!")
}
}
func createContourIndexesBuffer(withDevice device: MTLDevice) {
// Only reallocate the buffer if the length changed.
let length = MemoryLayout<ushort>.stride * contourIndexesCount
guard contourIndexesBuffer?.length != length else {
return
}
contourIndexesBuffer = device.makeBuffer(length: length, options: .storageModePrivate)
if contourIndexesBuffer == nil {
fatalError("Couldn't create contourIndexesBuffer!")
}
}
func fieldDidResize() {
// Please just get the device from somewhere. 😅
guard let device = gridGeometry?.device ?? samplesBuffer?.device else {
return
}
populateParametersBuffer()
populateGrid(withDevice: device)
createSamplesBuffer(withDevice: device)
lastSamplesCount = samplesCount
}
func populateParametersBuffer() {
guard let buffer = parametersBuffer else {
print("Tried to copy parameters buffer before buffer was allocated!")
return
}
// TODO: I'm cheating on this cause I didn't want to make a parallel struct in Swift and deal with alignment crap. >_> I should make a real struct for this.
let params: [uint] = [
field.size.x, field.size.y,
uint(xSamples), uint(ySamples),
sampleGridSize.x, sampleGridSize.y,
uint(field.balls.count)
]
memcpy(buffer.contents(), params, MemoryLayout<uint>.stride * params.count)
}
func populateGrid(withDevice device: MTLDevice) {
guard lastSamplesCount != samplesCount else {
return
}
print("Populating grid with (\(xSamples), \(ySamples)) samples")
let gridSizeX = Float(sampleGridSize.x)
let gridSizeY = Float(sampleGridSize.y)
var grid = [Rect]()
grid.reserveCapacity(samplesCount)
for y in 0..<ySamples {
for x in 0..<xSamples {
let transform = Matrix4x4.translation(dx: Float(x) * gridSizeX, dy: Float(y) * gridSizeY, dz: 0.0) * Matrix4x4.scale(x: gridSizeX, y: gridSizeY, z: 1)
let color = Float4(r: 0, g: 1, b: 0, a: 1)
let rect = Rect(transform: transform, color: color)
grid.append(rect)
}
}
if let buffer = device.makeBuffer(length: MemoryLayout<Rect>.stride * samplesCount, options: .storageModeShared) {
memcpy(buffer.contents(), grid, MemoryLayout<Rect>.stride * grid.count)
gridGeometry = buffer
} else {
fatalError("Couldn't create buffer for grid rects")
}
}
func encodeSamplingKernel(intoBuffer buffer: MTLCommandBuffer) {
guard let samplingPipeline = samplingPipeline else {
print("Encode called before sampling pipeline was set up!")
return
}
guard let encoder = buffer.makeComputeCommandEncoder() else {
print("Couldn't create compute encoder")
return
}
encoder.label = "Sample Field"
encoder.setComputePipelineState(samplingPipeline)
encoder.setBuffer(parametersBuffer, offset: 0, index: 0)
encoder.setBuffer(field.ballBuffer, offset: 0, index: 1)
encoder.setBuffer(samplesBuffer, offset: 0, index: 2)
// Dispatch!
let gridSize = MTLSize(width: xSamples, height: ySamples, depth: 1)
let threadgroupSize = MTLSize(width: xSamples, height: 1, depth: 1)
encoder.dispatchThreads(gridSize, threadsPerThreadgroup: threadgroupSize)
encoder.endEncoding()
}
func encodeContouringKernel(intoBuffer buffer: MTLCommandBuffer) {
guard let pipeline = contouringPipeline else {
print("Encode called before contouring pipeline was set up!")
return
}
guard let encoder = buffer.makeComputeCommandEncoder() else {
print("Couldn't create compute encoder")
return
}
encoder.label = "Contouring"
encoder.setComputePipelineState(pipeline)
encoder.setBuffer(parametersBuffer, offset: 0, index: 0)
encoder.setBuffer(samplesBuffer, offset: 0, index: 1)
encoder.setBuffer(contourIndexesBuffer, offset: 0, index: 2)
// Dispatch!
let gridSize = MTLSize(width: contourIndexesCount, height: 1, depth: 1)
let threadgroupSize = MTLSize(width: xSamples - 1, height: 1, depth: 1)
encoder.dispatchThreads(gridSize, threadsPerThreadgroup: threadgroupSize)
encoder.endEncoding()
}
}