Merge branch 'chars-lexer'

This commit is contained in:
Eryn Wells 2018-08-23 17:08:47 -07:00
commit b6a9b8a855
22 changed files with 579 additions and 1253 deletions

View file

@ -4,4 +4,3 @@ version = "0.1.0"
authors = ["Eryn Wells <eryn@erynwells.me>"]
[dependencies]
sibiltypes = { path = "../types" }

View file

@ -1,108 +0,0 @@
/* char.rs
* Eryn Wells <eryn@erynwells.me>
*/
use std::marker::Sized;
use charset;
pub trait FromChar {
fn from_char(c: char) -> Option<Self> where Self: Sized;
}
pub trait Lexable {
fn is_character_leader(&self) -> bool;
fn is_dot(&self) -> bool;
fn is_hash(&self) -> bool;
fn is_quote(&self) -> bool;
fn is_left_paren(&self) -> bool;
fn is_right_paren(&self) -> bool;
fn is_string_quote(&self) -> bool;
fn is_string_escape_leader(&self) -> bool;
fn is_string_escaped(&self) -> bool;
fn is_newline(&self) -> bool;
fn is_eof(&self) -> bool;
fn is_identifier_initial(&self) -> bool;
fn is_identifier_subsequent(&self) -> bool;
fn is_identifier_delimiter(&self) -> bool;
fn is_boolean_true(&self) -> bool;
fn is_boolean_false(&self) -> bool;
fn is_comment_initial(&self) -> bool;
}
impl Lexable for char {
fn is_left_paren(&self) -> bool {
*self == '('
}
fn is_right_paren(&self) -> bool {
*self == ')'
}
fn is_character_leader(&self) -> bool {
*self == '\\'
}
fn is_dot(&self) -> bool {
*self == '.'
}
fn is_hash(&self) -> bool {
*self == '#'
}
fn is_quote(&self) -> bool {
*self == '\''
}
fn is_string_quote(&self) -> bool {
*self == '"'
}
fn is_string_escape_leader(&self) -> bool {
*self == '\\'
}
fn is_string_escaped(&self) -> bool {
*self == '"' || *self == '\\'
}
fn is_boolean_true(&self) -> bool {
*self == 't'
}
fn is_boolean_false(&self) -> bool {
*self == 'f'
}
fn is_newline(&self) -> bool {
*self == '\n'
}
fn is_eof(&self) -> bool {
*self == '\0'
}
fn is_comment_initial(&self) -> bool {
*self == ';'
}
fn is_identifier_initial(&self) -> bool {
charset::identifier_initials().contains(&self)
}
fn is_identifier_subsequent(&self) -> bool {
charset::identifier_subsequents().contains(&self)
}
fn is_identifier_delimiter(&self) -> bool {
self.is_whitespace()
|| self.is_comment_initial()
|| self.is_left_paren()
|| self.is_right_paren()
|| self.is_string_quote()
|| self.is_eof()
}
}

53
lexer/src/chars.rs Normal file
View file

@ -0,0 +1,53 @@
/* lexer/src/chars.rs
* Eryn Wells <eryn@erynwells.me>
*/
pub trait Lexable {
fn is_left_paren(&self) -> bool;
fn is_right_paren(&self) -> bool;
fn is_identifier_initial(&self) -> bool;
fn is_identifier_subsequent(&self) -> bool;
fn is_identifier_delimiter(&self) -> bool;
}
impl Lexable for char {
fn is_left_paren(&self) -> bool {
*self == '('
}
fn is_right_paren(&self) -> bool {
*self == ')'
}
fn is_identifier_initial(&self) -> bool {
self.is_alphabetic() || self.is_special_initial()
}
fn is_identifier_subsequent(&self) -> bool {
self.is_identifier_initial() || self.is_numeric() || self.is_special_subsequent()
}
fn is_identifier_delimiter(&self) -> bool {
self.is_whitespace() || self.is_left_paren() || self.is_right_paren()
}
}
trait LexableSpecial {
fn is_special_initial(&self) -> bool;
fn is_special_subsequent(&self) -> bool;
fn is_explicit_sign(&self) -> bool;
}
impl LexableSpecial for char {
fn is_special_initial(&self) -> bool {
"!$%&*/:<=>?~_^".contains(*self)
}
fn is_special_subsequent(&self) -> bool {
self.is_explicit_sign() || ".@".contains(*self)
}
fn is_explicit_sign(&self) -> bool {
*self == '+' || *self == '-'
}
}

View file

@ -1,43 +0,0 @@
/* charset.rs
* Eryn Wells <eryn@erynwells.me>
*/
use std::collections::HashSet;
use std::iter::FromIterator;
pub type CharSet = HashSet<char>;
// TODO: Use std::sync::Once for these sets?
// https://doc.rust-lang.org/beta/std/sync/struct.Once.html
fn ascii_letters() -> CharSet {
let letters = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".chars();
CharSet::from_iter(letters)
}
fn ascii_digits() -> CharSet {
let digits = "1234567890".chars();
CharSet::from_iter(digits)
}
/// A set of all characters allowed to start Scheme identifiers.
pub fn identifier_initials() -> CharSet {
let letters = ascii_letters();
let extras = CharSet::from_iter("!$%&*/:<=>?~_^".chars());
let mut initials = CharSet::new();
initials.extend(letters.iter());
initials.extend(extras.iter());
initials
}
/// A set of all characters allowed to follow an identifier initial.
pub fn identifier_subsequents() -> CharSet {
let initials = identifier_initials();
let digits = ascii_digits();
let extras = CharSet::from_iter(".+-".chars());
let mut subsequents = CharSet::new();
subsequents.extend(initials.iter());
subsequents.extend(digits.iter());
subsequents.extend(extras.iter());
subsequents
}

16
lexer/src/error.rs Normal file
View file

@ -0,0 +1,16 @@
/* lexer/src/error.rs
* Eryn Wells <eryn@erynwells.me>
*/
#[derive(Debug, Eq, PartialEq)]
pub struct Error {
message: String
}
impl Error {
pub fn new(msg: String) -> Error {
Error {
message: msg
}
}
}

View file

@ -1,526 +0,0 @@
/* lexer.rs
* Eryn Wells <eryn@erynwells.me>
*/
use std::collections::HashSet;
use sibiltypes::Object;
use sibiltypes::number::Exact;
use char::{FromChar, Lexable};
use number::{NumberBuilder, Radix, Sign};
use str::{CharAt, RelativeIndexable};
use token::{Lex, Token};
type StateResult = Result<Option<Token>, String>;
trait HasResult {
fn has_token(&self) -> bool;
}
#[derive(Debug)]
enum State {
Char,
NamedChar(HashSet<&'static str>, String),
Comment,
Initial,
Id,
Dot,
Hash,
Number,
NumberExact,
NumberDecimal,
NumberRadix,
NumberSign,
Sign,
String,
StringEscape,
}
pub struct Lexer {
input: String,
begin: usize,
forward: usize,
line: usize,
line_offset: usize,
state: State,
number_builder: NumberBuilder,
string_value: String,
}
impl Lexer {
pub fn new(input: &str) -> Lexer {
Lexer {
input: String::from(input),
begin: 0,
forward: 0,
line: 1,
line_offset: 1,
state: State::Initial,
number_builder: NumberBuilder::new(),
string_value: String::new(),
}
}
}
impl Lexer {
fn begin_lexing(&mut self) {
self.forward = self.begin;
self.state = State::Initial;
}
/// Advance the forward pointer to the next character.
fn advance(&mut self) {
self.forward = self.input.index_after(self.forward);
self.line_offset += 1;
println!("> forward={}", self.forward);
}
/// Retract the forward pointer to the previous character.
fn retract(&mut self) {
self.forward = self.input.index_before(self.forward);
self.line_offset -= 1;
println!("< forward={}", self.forward);
}
/// Advance the begin pointer to prepare for the next iteration.
fn advance_begin(&mut self) {
self.begin = self.input.index_after(self.forward);
self.forward = self.begin;
println!("> begin={}, forward={}", self.begin, self.forward);
}
/// Update lexer state when it encounters a newline.
fn handle_newline(&mut self) {
self.line += 1;
self.line_offset = 1;
}
/// Get the substring between the two input indexes. This is the value to give to a new Token instance.
fn value(&self) -> String {
self.input[self.begin .. self.forward].to_string()
}
fn error_string(&self, message: String) -> String {
format!("{}:{}: {}", self.line, self.line_offset, message)
}
fn token_result(&self, token: Token) -> StateResult {
Ok(Some(token))
}
fn generic_error(&self, c: char) -> StateResult {
Err(self.error_string(format!("Invalid token character: {}", c)))
}
}
impl Lexer {
/// Handle self.state == State::Initial
fn state_initial(&mut self, c: char) -> StateResult {
if c.is_left_paren() {
return self.token_result(Token::LeftParen);
}
else if c.is_right_paren() {
return self.token_result(Token::RightParen);
}
else if c.is_dot() {
self.state = State::Dot;
self.advance();
}
else if c.is_hash() {
self.state = State::Hash;
self.advance();
}
else if c.is_quote() {
return self.token_result(Token::Quote);
}
else if c.is_string_quote() {
self.string_value = String::from("");
self.state = State::String;
self.advance();
}
else if let Some(sign) = Sign::from_char(c) {
self.number_builder = NumberBuilder::new();
self.number_builder.sign(sign);
self.state = State::Sign;
self.advance();
}
else if c.is_identifier_initial() {
self.state = State::Id;
self.advance();
}
else if c.is_digit(10) {
self.number_builder = NumberBuilder::new();
self.number_builder.extend_value(c);
self.state = State::Number;
self.advance();
}
else if c.is_whitespace() {
if c.is_newline() {
self.handle_newline();
}
self.advance_begin();
}
else if c.is_comment_initial() {
self.state = State::Comment;
self.advance();
}
else {
return self.generic_error(c);
}
Ok(None)
}
/// Handle self.state == State::Id
fn state_identifier(&mut self, c: char) -> StateResult {
if c.is_identifier_subsequent() {
// Stay in Id state.
self.advance();
}
else if c.is_identifier_delimiter() {
let value = self.value();
self.retract();
return self.token_result(Token::Id(value));
}
else {
return self.generic_error(c);
}
Ok(None)
}
/// Handle self.state == State::Char
fn state_char(&mut self, c: char) -> StateResult {
self.advance();
let lower_c = c.to_lowercase().collect::<String>();
let mut candidates: HashSet<&str> = HashSet::new();
for c in names::set().iter() {
if c.starts_with(&lower_c) {
candidates.insert(c);
}
}
if candidates.len() > 0 {
self.state = State::NamedChar(candidates, lower_c);
} else {
return self.token_result(Token::Character(Object::Char(c)));
}
Ok(None)
}
/// Handle self.state == State::NamedChar
fn state_named_char(&mut self, c: char) -> StateResult {
let (candidates, mut progress) = match self.state {
State::NamedChar(ref candidates, ref progress) => (candidates.clone(), progress.clone()),
_ => panic!("Called state_named_char without being in NamedChar state")
};
if c.is_identifier_delimiter() || c.is_eof() {
if progress.len() == 1 {
self.retract();
let token_char = Object::Char(progress.chars().next().unwrap());
return self.token_result(Token::Character(token_char));
}
else {
return self.generic_error(c);
}
}
progress.push(c);
let candidates: HashSet<&str> = {
let filtered = candidates.iter().filter(|c| c.starts_with(&progress)).map(|c| *c);
filtered.collect()
};
if candidates.len() == 1 {
let candidate = *candidates.iter().next().unwrap();
if candidate == &progress {
let token_char = Object::from_char_named(&progress);
self.token_result(Token::Character(token_char))
}
else {
self.state = State::NamedChar(candidates, progress);
self.advance();
Ok(None)
}
}
else if candidates.len() > 1 {
self.state = State::NamedChar(candidates, progress);
self.advance();
Ok(None)
}
else {
self.generic_error(c)
}
}
/// Handle self.state == State::Dot
fn state_dot(&mut self, c: char) -> StateResult {
if c.is_identifier_delimiter() {
self.retract();
return self.token_result(Token::Dot);
}
else if c.is_digit(10) {
self.number_builder = NumberBuilder::new();
self.number_builder.extend_decimal_value(c);
self.state = State::NumberDecimal;
self.advance();
}
else {
return self.generic_error(c);
}
Ok(None)
}
/// Handle self.state == State::Hash
fn state_hash(&mut self, c: char) -> StateResult {
if c.is_boolean_true() || c.is_boolean_false() {
self.advance();
let token_bool = Object::Bool(c.is_boolean_true());
return self.token_result(Token::Boolean(token_bool));
}
else if c.is_left_paren() {
self.advance();
return self.token_result(Token::LeftVectorParen);
}
else if c.is_character_leader() {
self.state = State::Char;
self.advance();
}
else if let Some(radix) = Radix::from_char(c) {
self.number_builder.radix(radix);
self.state = State::NumberRadix;
self.advance();
}
else if let Some(exactness) = Exact::from_char(c) {
self.number_builder.exact(exactness);
self.state = State::NumberExact;
self.advance();
}
else {
return self.generic_error(c);
}
Ok(None)
}
/// Handle self.state == State::Number
fn state_number(&mut self, c: char) -> StateResult {
if c.is_digit(self.number_builder.radix_value()) {
self.number_builder.extend_value(c);
self.advance();
}
else if c.is_dot() {
self.state = State::NumberDecimal;
self.advance();
}
else if c.is_identifier_delimiter() {
self.retract();
return self.token_result(Token::Number(self.number_builder.resolve()));
}
else {
return self.generic_error(c);
}
Ok(None)
}
fn state_number_exactness(&mut self, c: char) -> StateResult {
if c.is_hash() {
self.state = State::Hash;
self.advance();
}
else if let Some(sign) = Sign::from_char(c) {
self.number_builder.sign(sign);
self.state = State::NumberSign;
self.advance();
}
else if c.is_digit(self.number_builder.radix_value()) {
self.number_builder.extend_value(c);
self.state = State::Number;
self.advance();
}
else {
return self.generic_error(c);
}
Ok(None)
}
fn state_number_decimal(&mut self, c: char) -> StateResult {
if c.is_digit(Radix::Dec.value()) {
self.number_builder.extend_decimal_value(c);
self.advance();
}
else if c.is_identifier_delimiter() {
self.retract();
return self.token_result(Token::Number(self.number_builder.resolve()));
}
else {
return self.generic_error(c);
}
Ok(None)
}
fn state_number_radix(&mut self, c: char) -> StateResult {
if c.is_digit(self.number_builder.radix_value()) {
self.number_builder.extend_value(c);
self.state = State::Number;
self.advance();
}
else if c.is_dot() {
self.state = State::NumberDecimal;
self.advance();
}
else if c.is_hash() {
self.state = State::Hash;
self.advance();
}
else if let Some(sign) = Sign::from_char(c) {
self.number_builder.sign(sign);
self.state = State::NumberSign;
self.advance();
}
else {
return self.generic_error(c);
}
Ok(None)
}
fn state_number_sign(&mut self, c: char) -> StateResult {
if c.is_digit(self.number_builder.radix_value()) {
self.number_builder.extend_value(c);
self.state = State::Number;
self.advance();
}
else if c.is_dot() {
self.state = State::NumberDecimal;
self.advance();
}
else {
return self.generic_error(c);
}
Ok(None)
}
fn state_sign(&mut self, c: char) -> StateResult {
if c.is_digit(Radix::Dec.value()) {
self.number_builder.extend_value(c);
self.state = State::Number;
self.advance();
}
else if c.is_identifier_delimiter() {
let value = self.value();
self.retract();
return self.token_result(Token::Id(value));
}
else {
return self.generic_error(c);
}
Ok(None)
}
fn state_string(&mut self, c: char) -> StateResult {
self.advance();
if c.is_string_quote() {
return self.token_result(Token::String(self.string_value.clone()));
}
else if c.is_string_escape_leader() {
self.state = State::StringEscape;
}
else {
self.string_value.push(c);
}
Ok(None)
}
fn state_string_escape(&mut self, c: char) -> StateResult {
let char_to_push = match c {
'0' => '\0',
'n' => '\n',
't' => '\t',
'"' => '"',
'\\' => '\\',
_ => return Err(self.error_string(format!("Invalid string escape character: {}", c))),
};
self.string_value.push(char_to_push);
self.state = State::String;
self.advance();
Ok(None)
}
fn state_comment(&mut self, c: char) -> StateResult {
if c.is_newline() {
self.handle_newline();
return self.token_result(Token::Comment(self.value()));
}
else if c.is_eof() {
return self.token_result(Token::Comment(self.value()));
}
self.advance();
Ok(None)
}
}
impl Iterator for Lexer {
type Item = Lex;
fn next(&mut self) -> Option<Lex> {
self.begin_lexing();
if self.begin == self.input.len() {
return None;
}
let mut token: Option<Token> = None;
println!("Lexing '{}'", &self.input[self.begin ..]);
while token.is_none() {
let c = match self.input.char_at(self.forward) {
Some(c) => c,
None => '\0',
};
println!("state={:?} c='{}'", self.state, c);
let previous_forward = self.forward;
let result = match self.state {
State::Char=> self.state_char(c),
State::NamedChar(_, _) => self.state_named_char(c),
State::Comment => self.state_comment(c),
State::Dot => self.state_dot(c),
State::Hash => self.state_hash(c),
State::Id => self.state_identifier(c),
State::Initial => self.state_initial(c),
State::Number => self.state_number(c),
State::NumberDecimal => self.state_number_decimal(c),
State::NumberExact => self.state_number_exactness(c),
State::NumberRadix => self.state_number_radix(c),
State::NumberSign => self.state_number_sign(c),
State::Sign => self.state_sign(c),
State::String => self.state_string(c),
State::StringEscape => self.state_string_escape(c),
};
debug_assert!(result.has_token() || self.forward != previous_forward, "No lexing progress made!");
if result.has_token() {
token = result.ok().unwrap();
}
else if result.is_err() {
assert!(false, "{}", result.err().unwrap());
}
}
self.advance_begin();
match token {
Some(t) => Some(Lex::new(t, self.line, self.line_offset)),
None => None,
}
}
}
impl HasResult for StateResult {
fn has_token(&self) -> bool {
match *self {
Ok(ref token) => match *token {
Some(_) => true,
None => false,
},
Err(_) => false
}
}
}

View file

@ -1,183 +1,124 @@
extern crate sibiltypes;
/* lexer/src/lib.rs
* Eryn Wells <eryn@erynwells.me>
*/
mod char;
mod charset;
mod lexer;
mod number;
mod str;
use std::iter::Peekable;
use chars::Lexable;
mod chars;
mod error;
mod token;
pub use lexer::Lexer;
pub use token::Token;
pub use error::Error;
pub use token::{Lex, Token};
pub fn lex(input: &str) -> Lexer {
Lexer::new(&input)
pub type Result = std::result::Result<Lex, Error>;
#[derive(Debug, Eq, PartialEq)]
enum Resume { Here, AtNext }
#[derive(Debug, Eq, PartialEq)]
enum IterationResult {
Finish,
Continue,
Emit(Token, Resume),
Error(Error),
}
#[cfg(test)]
mod tests {
use sibiltypes::{Bool, Char, Number};
use std::iter::Iterator;
use super::lex;
use lexer::Lexer;
use token::Token;
pub struct Lexer<T> where T: Iterator<Item=char> {
input: Peekable<T>,
line: usize,
offset: usize,
}
#[test]
fn finds_parens() {
check_single_token("(", Token::LeftParen);
check_single_token(")", Token::RightParen);
check_single_token("#(", Token::LeftVectorParen);
impl<T> Lexer<T> where T: Iterator<Item=char> {
pub fn new(input: T) -> Lexer<T> {
Lexer {
input: input.peekable(),
line: 0,
offset: 0
}
}
#[test]
fn finds_characters() {
check_single_token("#\\a", Token::Character(Char('a')));
check_single_token("#\\n", Token::Character(Char('n')));
check_single_token("#\\s", Token::Character(Char('s')));
fn emit(&self, token: Token, resume: Resume) -> IterationResult {
IterationResult::Emit(token, resume)
}
#[test]
fn finds_named_characters() {
check_single_token("#\\newline", Token::Character(Char('\n')));
check_single_token("#\\null", Token::Character(Char('\0')));
check_single_token("#\\space", Token::Character(Char(' ')));
fn fail(&self, msg: String) -> IterationResult {
IterationResult::Error(Error::new(msg))
}
}
#[test]
fn finds_dots() {
check_single_token(".", Token::Dot);
let mut lexer = Lexer::new("abc . abc");
assert_next_token(&mut lexer, &Token::Id(String::from("abc")));
assert_next_token(&mut lexer, &Token::Dot);
assert_next_token(&mut lexer, &Token::Id(String::from("abc")));
impl<T> Lexer<T> where T: Iterator<Item=char> {
fn handle_whitespace(&mut self, c: char) {
if c == '\n' {
self.line += 1;
self.offset = 0;
}
else {
self.offset += 1;
}
}
}
#[test]
fn finds_identifiers() {
let tok = |s: &str| { check_single_token(s, Token::Id(String::from(s))); };
tok("abc");
tok("number?");
tok("+");
tok("-");
}
impl<T> Iterator for Lexer<T> where T: Iterator<Item=char> {
type Item = Result;
#[test]
fn finds_booleans() {
check_single_token("#t", Token::Boolean(Bool(true)));
check_single_token("#f", Token::Boolean(Bool(false)));
}
#[test]
fn finds_comments() {
let s = "; a comment";
check_single_token(s, Token::Comment(String::from(s)));
}
#[test]
fn finds_escaped_characters_in_strings() {
check_single_token("\"\\\\\"", Token::String(String::from("\\")));
check_single_token("\"\\\"\"", Token::String(String::from("\"")));
check_single_token("\"\\n\"", Token::String(String::from("\n")));
}
#[test]
fn finds_numbers() {
check_single_token("34", Token::Number(Number::from_int(34, true)));
check_single_token(".34", Token::Number(Number::from_float(0.34, false)));
check_single_token("0.34", Token::Number(Number::from_float(0.34, false)));
}
#[test]
fn finds_rational_numbers() {
check_single_token("3/2", Token::Number(Number::from_quotient(3, 2, true)));
check_single_token("-3/2", Token::Number(Number::from_quotient(-3, 2, true)));
}
#[test]
fn finds_negative_numbers() {
check_single_token("-3", Token::Number(Number::from_int(-3, true)));
check_single_token("-0", Token::Number(Number::from_int(-0, true)));
check_single_token("-0.56", Token::Number(Number::from_float(-0.56, false)));
check_single_token("-3.14159", Token::Number(Number::from_float(-3.14159, false)));
}
#[test]
fn finds_bin_numbers() {
check_single_token("#b0", Token::Number(Number::from_int(0b0, true)));
check_single_token("#b01011", Token::Number(Number::from_int(0b01011, true)));
}
#[test]
fn finds_dec_numbers() {
check_single_token("34", Token::Number(Number::from_int(34, true)));
check_single_token("#d89", Token::Number(Number::from_int(89, true)));
}
#[test]
fn finds_oct_numbers() {
check_single_token("#o45", Token::Number(Number::from_int(0o45, true)));
}
#[test]
fn finds_exact_numbers() {
check_single_token("#e45", Token::Number(Number::from_int(45, true)));
check_single_token("#e-45", Token::Number(Number::from_int(-45, true)));
check_single_token("#e4.5", Token::Number(Number::from_float(4.5, true)));
}
#[test]
fn finds_hex_numbers() {
check_single_token("#h4A65", Token::Number(Number::from_int(0x4A65, true)));
}
#[test]
fn finds_quote() {
check_single_token("'", Token::Quote);
}
#[test]
fn finds_strings() {
check_single_token("\"\"", Token::String(String::from("")));
check_single_token("\"abc\"", Token::String(String::from("abc")));
}
#[test]
fn lexes_simple_expression() {
check_tokens("(+ 3.4 6.8)", vec![
Token::LeftParen,
Token::Id(String::from("+")),
Token::Number(Number::from_float(3.4, false)),
Token::Number(Number::from_float(6.8, false)),
Token::RightParen]);
}
#[test]
fn lexes_quoted_identifier() {
check_tokens("'abc", vec![Token::Quote, Token::Id(String::from("abc"))]);
}
fn check_single_token(input: &str, expected: Token) {
let mut lexer = Lexer::new(input);
assert_next_token(&mut lexer, &expected);
}
fn check_tokens(input: &str, expected: Vec<Token>) {
let lexer = lex(input);
let mut expected_iter = expected.iter();
for lex in lexer {
if let Some(expected_token) = expected_iter.next() {
assert_eq!(lex.token, *expected_token);
fn next(&mut self) -> Option<Self::Item> {
let mut buffer = String::new();
loop {
let peek = self.input.peek().map(char::clone);
let result = if buffer.is_empty() {
match peek {
Some(c) if c.is_left_paren() => {
buffer.push(c);
self.emit(Token::LeftParen, Resume::AtNext)
},
Some(c) if c.is_right_paren() => {
buffer.push(c);
self.emit(Token::RightParen, Resume::AtNext)
},
Some(c) if c.is_whitespace() => {
self.handle_whitespace(c);
IterationResult::Continue
},
Some(c) if c.is_identifier_initial() => {
buffer.push(c);
IterationResult::Continue
},
Some(c) => self.fail(format!("Invalid character: {}", c)),
// We found EOF and there's no pending string, so just finish.
None => IterationResult::Finish,
}
}
else {
assert!(false, "Found a token we didn't expect: {:?}", lex.token);
}
match peek {
Some(c) if c.is_identifier_subsequent() => {
buffer.push(c);
IterationResult::Continue
}
Some(c) if c.is_identifier_delimiter() =>
self.emit(Token::Id, Resume::Here),
Some(c) => self.fail(format!("Invalid character: {}", c)),
// Found EOF. Emit what we have and finish.
// Note: the Resume argument doesn't matter in this case since the input
// iterator will always be None from here on.
None => self.emit(Token::Id, Resume::Here),
}
};
match result {
IterationResult::Finish => break,
IterationResult::Continue => self.input.next(),
IterationResult::Emit(token, resume) => {
if resume == Resume::AtNext {
self.input.next();
}
let lex = Lex::new(token, &buffer, self.line, self.offset);
return Some(Ok(lex))
},
IterationResult::Error(err) => return Some(Err(err)),
};
}
// TODO: Check that all expected tokens are consumed.
}
fn assert_next_token(lexer: &mut Lexer, expected: &Token) {
let lex = lexer.next().unwrap();
assert_eq!(lex.token, *expected);
None
}
}

14
lexer/src/main.rs Normal file
View file

@ -0,0 +1,14 @@
/* lexer/src/main.rs
* Eryn Wells <eryn@erynwells.me>
*/
extern crate sibillexer;
use sibillexer::Lexer;
fn main() {
let lexer = Lexer::new("(ab (cd) ef)".chars());
for tok in lexer {
println!("found {:?}", tok.unwrap());
}
}

View file

@ -1,176 +0,0 @@
/* number.rs
* Eryn Wells <eryn@erynwells.me>
*/
use sibiltypes::Object;
use sibiltypes::number::{Number, Exact};
use char::FromChar;
#[derive(Debug)]
pub enum Radix { Bin, Oct, Dec, Hex }
#[derive(Eq, PartialEq, Debug)]
pub enum Sign { Pos, Neg }
#[derive(Debug)]
pub struct NumberBuilder {
exact: Exact,
radix: Radix,
sign: Sign,
value: f64,
point: u32,
}
impl NumberBuilder {
pub fn new() -> NumberBuilder {
NumberBuilder {
exact: Exact::Yes,
radix: Radix::Dec,
sign: Sign::Pos,
value: 0.0,
point: 0,
}
}
pub fn exact<'a>(&'a mut self, ex: Exact) -> &'a mut NumberBuilder {
self.exact = ex;
self
}
pub fn radix<'a>(&'a mut self, r: Radix) -> &'a mut NumberBuilder {
self.radix = r;
self
}
pub fn sign<'a>(&'a mut self, s: Sign) -> &'a mut NumberBuilder {
self.sign = s;
self
}
pub fn extend_value<'a>(&'a mut self, digit: char) -> &'a mut Self {
if let Some(place) = NumberBuilder::place_value(digit) {
self.value = self.radix.float_value() * self.value + place;
}
else {
// TODO: Indicate an error.
}
self
}
pub fn extend_decimal_value<'a>(&'a mut self, digit: char) -> &'a mut Self {
self.extend_value(digit);
self.point += 1;
self
}
pub fn resolve(&self) -> Number {
// TODO: Convert fields to Number type.
let value = if self.point > 0 { self.value / 10u32.pow(self.point) as f64 } else { self.value };
let value = if self.sign == Sign::Neg { value * -1.0 } else { value };
// TODO: Use an integer if we can.
Number::from_float(value, self.exact)
}
pub fn radix_value(&self) -> u32 {
self.radix.value()
}
fn place_value(digit: char) -> Option<f64> {
match digit {
'0' ... '9' => Some((digit as u32 - '0' as u32) as f64),
'a' ... 'f' => Some((digit as u32 - 'a' as u32 + 10) as f64),
'A' ... 'F' => Some((digit as u32 - 'A' as u32 + 10) as f64),
_ => None,
}
}
}
impl Radix {
pub fn value(&self) -> u32 {
match *self {
Radix::Bin => 2,
Radix::Oct => 8,
Radix::Dec => 10,
Radix::Hex => 16,
}
}
pub fn float_value(&self) -> f64 {
self.value() as f64
}
}
impl FromChar for Radix {
fn from_char(c: char) -> Option<Radix> {
match c {
'b' => Some(Radix::Bin),
'o' => Some(Radix::Oct),
'd' => Some(Radix::Dec),
'h' => Some(Radix::Hex),
_ => None,
}
}
}
impl FromChar for Sign {
fn from_char(c: char) -> Option<Sign> {
match c {
'+' => Some(Sign::Pos),
'-' => Some(Sign::Neg),
_ => None,
}
}
}
impl FromChar for Exact {
fn from_char(c: char) -> Option<Exact> {
match c {
'i' => Some(Exact::No),
'e' => Some(Exact::Yes),
_ => None,
}
}
}
#[cfg(test)]
mod tests {
use sibiltypes::Number;
use super::*;
#[test]
fn builds_integers() {
let mut b = NumberBuilder::new();
b.extend_value('3');
assert_eq!(b.resolve(), Number::from_int(3, true));
b.extend_value('4');
assert_eq!(b.resolve(), Number::from_int(34, true));
}
#[test]
fn builds_negative_integers() {
let num = NumberBuilder::new().sign(Sign::Neg).extend_value('3').resolve();
assert_eq!(num, Number::from_int(-3, true));
}
#[test]
fn builds_pointy_numbers() {
let mut b = NumberBuilder::new();
b.extend_value('5');
assert_eq!(b.resolve(), Number::from_int(5, true));
b.extend_decimal_value('3');
assert_eq!(b.resolve(), Number::from_float(5.3, false));
b.extend_decimal_value('4');
assert_eq!(b.resolve(), Number::from_float(5.34, false));
}
#[test]
fn builds_hex() {
let mut b = NumberBuilder::new();
b.radix(Radix::Hex).extend_value('4');
assert_eq!(b.resolve(), Number::from_int(0x4, true));
b.extend_value('A');
assert_eq!(b.resolve(), Number::from_int(0x4A, true));
b.extend_value('6');
assert_eq!(b.resolve(), Number::from_int(0x4A6, true));
}
}

View file

@ -1,103 +0,0 @@
/* str.rs
* Eryn Wells <eryn@erynwells.me>
*/
pub trait RelativeIndexable {
/// Get the index of the character boundary preceding the given index. The index does not need to be on a character
/// boundary.
fn index_before(&self, usize) -> usize;
/// Get the index of the character boundary following the given index. The index does not need to be on a character
/// boundary.
fn index_after(&self, usize) -> usize;
}
pub trait CharAt {
/// Get the character at the given byte index. This index must be at a character boundary as defined by
/// `is_char_boundary()`.
fn char_at(&self, usize) -> Option<char>;
}
impl RelativeIndexable for str {
fn index_before(&self, index: usize) -> usize {
if index == 0 {
return 0;
}
let mut index = index;
if index > self.len() {
index = self.len();
}
loop {
index -= 1;
if self.is_char_boundary(index) {
break;
}
}
index
}
fn index_after(&self, index: usize) -> usize {
if index >= self.len() {
return self.len();
}
let mut index = index;
loop {
index += 1;
if self.is_char_boundary(index) {
break;
}
}
index
}
}
impl CharAt for str {
fn char_at(&self, index: usize) -> Option<char> {
if !self.is_char_boundary(index) {
return None;
}
let end = self.index_after(index);
let char_str = &self[index .. end];
char_str.chars().nth(0)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn index_before_is_well_behaved_for_ascii() {
let s = "abc";
// Sanity
assert_eq!(s.index_before(0), 0);
assert_eq!(s.index_before(2), 1);
// An index beyond the string bounds returns the index of the last character in the string.
{
let idx = s.index_before(4);
assert_eq!(idx, 2);
assert!(s.is_char_boundary(idx));
let last_char = &s[idx ..];
assert_eq!(last_char.len(), 1);
assert_eq!(last_char.chars().nth(0), Some('c'));
}
}
#[test]
fn index_after_is_well_behaved_for_ascii() {
let s = "abc";
// Sanity
assert_eq!(s.index_after(0), 1);
assert_eq!(s.index_after(2), 3);
// An index beyond the string bounds returns the length of the string
{
let idx = s.index_after(4);
assert_eq!(idx, s.len());
assert!(s.is_char_boundary(idx));
}
}
}

View file

@ -1,39 +1,28 @@
/* token.rs
/* lexer/src/token.rs
* Eryn Wells <eryn@erynwells.me>
*/
use sibiltypes::Object;
#[derive(Debug, PartialEq)]
pub enum Token {
Boolean(Object),
Character(Object),
Comment(Object),
Dot,
Id(Object),
LeftParen,
LeftVectorParen,
Number(Object),
Quote,
RightParen,
String(Object),
}
/// A Lex is a Token extracted from a specific position in an input string. It contains useful
/// information about the token's place in that input.
#[derive(Debug)]
#[derive(Debug, Eq, PartialEq)]
pub struct Lex {
token: Token,
value: String,
line: usize,
offset: usize,
}
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Token { LeftParen, RightParen, Id, }
impl Lex {
pub fn new(token: Token, line: usize, offset: usize) -> Lex {
Lex { token: token, line: line, offset: offset }
pub fn new(token: Token, value: &str, line: usize, offset: usize) -> Lex {
Lex {
token: token,
value: String::from(value),
line: line,
offset: offset,
}
}
pub fn token(&self) -> &Token { &self.token }
pub fn line(&self) -> usize { self.line }
pub fn offset(&self) -> usize { self.offset }
pub fn token(&self) -> Token { self.token }
pub fn value(&self) -> &str { self.value.as_str() }
}

View file

@ -0,0 +1,33 @@
/* lexer/tests/single_token.rs
* Eryn Wells <eryn@erynwells.me>
*/
//! Tests that single tokens are matches by the lexer.
extern crate sibillexer;
use sibillexer::{Lexer, Lex, Token};
#[test]
fn lexer_finds_left_paren() {
let expected_lex = Lex::new(Token::LeftParen, "(", 0, 0);
let mut lex = Lexer::new("(".chars());
assert_eq!(lex.next(), Some(Ok(expected_lex)));
assert_eq!(lex.next(), None);
}
#[test]
fn lexer_finds_right_paren() {
let expected_lex = Lex::new(Token::RightParen, ")", 0, 0);
let mut lex = Lexer::new(")".chars());
assert_eq!(lex.next(), Some(Ok(expected_lex)));
assert_eq!(lex.next(), None);
}
#[test]
fn lexer_finds_id() {
let expected_lex = Lex::new(Token::Id, "abc", 0, 0);
let mut lex = Lexer::new("abc".chars());
assert_eq!(lex.next(), Some(Ok(expected_lex)));
assert_eq!(lex.next(), None);
}

View file

@ -5,14 +5,50 @@
extern crate sibillexer;
extern crate sibiltypes;
mod program;
mod node_parser;
use sibillexer::Lexer;
use std::iter::Peekable;
use sibillexer::Result as LexerResult;
use sibiltypes::Object;
use node_parser::{NodeParser, IdParser, ListParser};
struct ParseError { }
/// The output of calling `parse()` on a Parser is one of these Result objects.
pub type Result = std::result::Result<Object, ParseError>;
type Result = std::result::Result<Object, ParseError>;
#[derive(Debug)]
pub struct ParseError;
pub struct Parser<T> where T: Iterator<Item=LexerResult> {
input: Peekable<T>,
parsers: Vec<Box<NodeParser>>,
}
impl<T> Parser<T> where T: Iterator<Item=LexerResult> {
pub fn new(input: T) -> Parser<T> {
Parser {
input: input.peekable(),
parsers: Vec::new(),
}
}
}
impl<T> Iterator for Parser<T> where T: Iterator<Item=LexerResult> {
type Item = Result;
fn next(&mut self) -> Option<Self::Item> {
loop {
if let Some(lex) = self.input.next() {
if let Ok(lex) = lex {
} else {
}
} else {
break;
}
}
assert_eq!(self.parsers.len(), 0);
None
}
}
#[cfg(test)]
mod tests {

17
parser/src/main.rs Normal file
View file

@ -0,0 +1,17 @@
/* parser/src/main.rs
* Eryn Wells <eryn@erynwells.me>
*/
extern crate sibillexer;
extern crate sibilparser;
use sibillexer::Lexer;
use sibilparser::Parser;
fn main() {
let lexer = Lexer::new("(ab)".chars());
let parser = Parser::new(lexer);
for thing in parser {
println!("{:?}", thing);
}
}

91
parser/src/node_parser.rs Normal file
View file

@ -0,0 +1,91 @@
/* node_parser.rs
* Eryn Wells <eryn@erynwells.me>
*/
use std::fmt::Debug;
use sibillexer::{Lex, Token};
use sibiltypes::{Object, ObjectPtr};
#[derive(Debug)]
pub enum NodeParseResult {
/// Continue parsing with this NodeParser. The passed in Lex was consumed.
Continue,
/// This NodeParser has completed its work and has produced the given Object
/// as a result.
Complete { obj: ObjectPtr },
/// Push a new NodeParser onto the parsing stack and let that parser proceed
/// with the current Lex.
Push { next: Box<NodeParser> },
/// There was an error parsing with the current Lex.
Error { msg: String },
}
/// A `NodeParser` is responsible for parsing one particular thing in the Scheme
/// parse tree. Roughly, there should be one `XParser` for each variant of the
/// `sibiltypes::Object` enum. As the top-level `Parser` object progresses
/// through the stream of tokens, new NodeParsers are created to handle the
/// nodes it encounters.
pub trait NodeParser: Debug {
fn parse(&mut self, lex: Lex) -> NodeParseResult;
}
#[derive(Debug)]
pub struct ProgramParser {
}
impl ProgramParser {
pub fn new() -> ProgramParser {
ProgramParser { }
}
}
impl NodeParser for ProgramParser {
fn parse(&mut self, lex: Lex) -> NodeParseResult {
NodeParseResult::Error { msg: "womp".to_string() }
}
}
#[derive(Debug)]
pub struct IdParser {
}
impl IdParser {
pub fn new() -> IdParser {
IdParser { }
}
}
impl NodeParser for IdParser {
fn parse(&mut self, lex: Lex) -> NodeParseResult {
match lex.token() {
Token::Id => {
let value = String::from(lex.value());
let obj = ObjectPtr::new(Object::Symbol(value));
NodeParseResult::Complete { obj: obj }
}
_ => {
let msg = String::from(format!("Invalid token: {:?}", lex));
NodeParseResult::Error { msg: msg }
}
}
}
}
#[derive(Debug)]
pub struct ListParser {
list: ObjectPtr
}
impl ListParser {
pub fn new() -> ListParser {
ListParser {
list: ObjectPtr::Null
}
}
}
impl NodeParser for ListParser {
fn parse(&mut self, lex: Lex) -> NodeParseResult {
NodeParseResult::Error { msg: "womp".to_string() }
}
}

View file

@ -1,8 +0,0 @@
/* parser/src/program.rs
* Eryn Wells <eryn@erynwells.me>
*/
use sibillexer::Lexer;
use super::Result;
use super::ParseError;

View file

@ -1,13 +1,10 @@
pub mod number;
pub mod char;
mod bool;
mod object;
mod predicates;
mod pair;
mod sym;
pub use object::Object;
pub use object::ObjectPtr;
pub use predicates::*;
pub use object::Obj;
pub use pair::Pair;
pub use sym::Sym;
#[cfg(test)]
mod tests {

View file

@ -90,13 +90,14 @@ impl fmt::Display for Number {
#[cfg(test)]
mod tests {
use super::Exact;
use super::Number;
use super::real::Real;
#[test]
fn exact_numbers_are_exact() {
assert!(Number::from_int(3, true).is_exact());
assert!(!Number::from_int(3, false).is_exact());
assert!(Number::from_int(3, Exact::Yes).is_exact());
assert!(!Number::from_int(3, Exact::No).is_exact());
}
#[test]

View file

@ -4,8 +4,8 @@
//! # Objects
//!
//! All scheme types are represented by the `Object` enum defined in this
//! module. Most references to objects are going to be through an `ObjectPtr`.
//! All Scheme types implement the `Object` trait defined in this module. Most
//! references to objects are going to be through an `ObjectPtr`.
//!
//! ## Type Predicates
//!
@ -13,105 +13,133 @@
//! available types in Scheme. These predicates are implemented as `is_*`
//! methods in a bunch of `Is*` traits defined below.
use std::any::Any;
use std::fmt;
use std::ops::Deref;
use number::Number;
use super::*;
#[derive(Debug, PartialEq)]
pub enum ObjectPtr {
/// Absence of a value. A null pointer.
pub enum Obj {
Null,
/// A pointer to an object.
Ptr(Box<Object>),
Ptr(Box<Object>)
}
#[derive(Debug, PartialEq)]
pub enum Object {
Bool(bool),
ByteVector(Vec<u8>),
Char(char),
Number(Number),
Pair(ObjectPtr, ObjectPtr),
//Procedure/*( TODO: Something )*/,
//Record/*( TODO: Something )*/,
String(String),
Symbol(String),
Vector(Vec<ObjectPtr>),
pub trait Object:
fmt::Display
{
fn as_any(&self) -> &Any;
fn as_pair(&self) -> Option<&Pair>;
fn as_sym(&self) -> Option<&Sym>;
}
impl ObjectPtr {
pub fn new(obj: Object) -> ObjectPtr { ObjectPtr::Ptr(Box::new(obj)) }
}
impl fmt::Display for ObjectPtr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
ObjectPtr::Null => write!(f, "()"),
ObjectPtr::Ptr(ref bx) => write!(f, "{}", bx.deref()),
impl Obj {
pub fn unbox_as<T: 'static + Object>(&self) -> Option<&T> {
match self {
Obj::Null => None,
Obj::Ptr(obj) => obj.as_any().downcast_ref::<T>()
}
}
}
impl fmt::Display for Object {
impl fmt::Display for Obj {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Object::Bool(ref v) => {
let out = if *v { "#t" } else { "#f" };
write!(f, "{}", out)
},
Object::ByteVector(ref vec) => {
// TODO: Actually write the vector values.
write!(f, "#u8(").and_then(|_| write!(f, ")"))
},
Object::Char(ref c) => {
// TODO: This is not correct for all cases. See section 6.6 of the spec.
write!(f, "#\\{}", c)
},
Object::Number(ref n) => {
// TODO: Implement Display for Number
write!(f, "{}", n)
}
Object::Pair(ref car, ref cdr) => {
write!(f, "(").and_then(|_| Object::fmt_pair(car, cdr, f))
.and_then(|_| write!(f, ")"))
},
Object::String(ref st) => {
write!(f, "\"{}\"", st)
},
Object::Symbol(ref sym) => {
write!(f, "{}", sym)
},
Object::Vector(ref vec) => {
// TODO: Actually write the vector values.
vec.iter().enumerate().fold(write!(f, "#("), |acc, (i, obj)| {
let space = if i == (vec.len() - 1) { " " } else { "" };
acc.and(write!(f, "{}{}", obj, space))
}).and(write!(f, ")"))
}
match self {
Obj::Null => write!(f, "null"),
Obj::Ptr(obj) => write!(f, "{}", obj)
}
}
}
impl Object {
fn fmt_pair(car: &ObjectPtr, cdr: &ObjectPtr, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", car).and_then(|r| match cdr {
&ObjectPtr::Null => Ok(r), // Don't write anything.
&ObjectPtr::Ptr(ref ptr) => match ptr.deref() {
&Object::Pair(ref next_car, ref next_cdr) => {
write!(f, " ").and_then(|_| Object::fmt_pair(next_car, next_cdr, f))
},
_ => write!(f, " . {}", ptr)
}
})
}
}
//#[derive(Debug, PartialEq)]
//pub enum Object {
// ByteVector(Vec<u8>),
// Char(char),
// Number(Number),
// Pair(ObjectPtr, ObjectPtr),
// //Procedure/*( TODO: Something )*/,
// //Record/*( TODO: Something )*/,
// String(String),
// Symbol(String),
// Vector(Vec<ObjectPtr>),
//}
//
//impl ObjectPtr {
// pub fn new(obj: Object) -> ObjectPtr {
// ObjectPtr::Ptr(Box::new(obj))
// }
//
// pub fn new_pair() -> ObjectPtr {
// ObjectPtr::new(Object::Pair(ObjectPtr::Null, ObjectPtr::Null))
// }
//}
//
//impl fmt::Display for ObjectPtr {
// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// match *self {
// ObjectPtr::Null => write!(f, "()"),
// ObjectPtr::Ptr(ref bx) => write!(f, "{}", bx.deref()),
// }
// }
//}
//
//impl fmt::Display for Object {
// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// match *self {
// Object::Bool(ref v) => {
// let out = if *v { "#t" } else { "#f" };
// write!(f, "{}", out)
// },
//
// Object::ByteVector(ref vec) => {
// // TODO: Actually write the vector values.
// write!(f, "#u8(").and_then(|_| write!(f, ")"))
// },
//
// Object::Char(ref c) => {
// // TODO: This is not correct for all cases. See section 6.6 of the spec.
// write!(f, "#\\{}", c)
// },
//
// Object::Number(ref n) => {
// // TODO: Implement Display for Number
// write!(f, "{}", n)
// }
//
// Object::Pair(ref car, ref cdr) => {
// write!(f, "(").and_then(|_| Object::fmt_pair(car, cdr, f))
// .and_then(|_| write!(f, ")"))
// },
//
// Object::String(ref st) => {
// write!(f, "\"{}\"", st)
// },
//
// Object::Symbol(ref sym) => {
// write!(f, "{}", sym)
// },
//
// Object::Vector(ref vec) => {
// // TODO: Actually write the vector values.
// vec.iter().enumerate().fold(write!(f, "#("), |acc, (i, obj)| {
// let space = if i == (vec.len() - 1) { " " } else { "" };
// acc.and(write!(f, "{}{}", obj, space))
// }).and(write!(f, ")"))
// }
// }
// }
//}
//
//impl Object {
// fn fmt_pair(car: &ObjectPtr, cdr: &ObjectPtr, f: &mut fmt::Formatter) -> fmt::Result {
// write!(f, "{}", car).and_then(|r| match cdr {
// &ObjectPtr::Null => Ok(r), // Don't write anything.
// &ObjectPtr::Ptr(ref ptr) => match ptr.deref() {
// &Object::Pair(ref next_car, ref next_cdr) => {
// write!(f, " ").and_then(|_| Object::fmt_pair(next_car, next_cdr, f))
// },
// _ => write!(f, " . {}", ptr)
// }
// })
// }
//}
#[cfg(test)]
mod tests {

41
types/src/pair.rs Normal file
View file

@ -0,0 +1,41 @@
/* types/src/pair.rs
* Eryn Wells <eryn@erynwells.me>
*/
use std::any::Any;
use std::fmt;
use super::*;
use object::Object;
pub struct Pair {
car: Obj,
cdr: Obj
}
impl Pair {
fn fmt_pair(&self, f: &mut fmt::Formatter) -> fmt::Result {
let r = write!(f, "{}", self.car);
r.and_then(|r| match self.cdr {
Obj::Null => Ok(r), // Don't write anything.
Obj::Ptr(ref next) => {
match next.as_pair() {
Some(next_pair) => write!(f, " ").and_then(|_| next_pair.fmt_pair(f)),
None => write!(f, " . {}", next)
}
}
})
}
}
impl Object for Pair {
fn as_any(&self) -> &Any { self }
fn as_pair(&self) -> Option<&Pair> { Some(self) }
fn as_sym(&self) -> Option<&Sym> { None }
}
impl fmt::Display for Pair {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "(").and_then(|_| self.fmt_pair(f))
.and_then(|_| write!(f, ")"))
}
}

View file

@ -1,7 +1,10 @@
/* types/src/predicates.rs
/* types/src/preds.rs
* Eryn Wells <eryn@erynwells.me>
*/
//! This module defines several important predicates for determing what kind of
//! a thing this Object is.
pub trait IsNull {
/// Is this thing null?
fn is_null(&self) -> bool { false }
@ -20,12 +23,21 @@ pub trait IsChar {
pub trait IsNumber {
/// Is this thing a number?
fn is_number(&self) -> bool { self.is_complex() || self.is_real() || self.is_rational() || self.is_integer() }
/// Should return `true` if this Value is a complex number type.
fn is_complex(&self) -> bool { self.is_real() }
/// Should return `true` if this Value is a real number type.
fn is_real(&self) -> bool { self.is_rational() }
/// Should return `true` if this Value is a rational number type.
fn is_rational(&self) -> bool { self.is_integer() }
/// Should return `true` if this Value is a integer number type.
fn is_integer(&self) -> bool { false }
}
pub trait IsPair {
/// Should return `true` if this Value is a pair.
fn is_pair(&self) -> bool { false }
}

22
types/src/sym.rs Normal file
View file

@ -0,0 +1,22 @@
/* types/src/symbol.rs
* Eryn Wells <eryn@erynwells.me>
*/
use std::any::Any;
use std::fmt;
use object::Object;
use super::*;
pub struct Sym(String);
impl Object for Sym {
fn as_any(&self) -> &Any { self }
fn as_pair(&self) -> Option<&Pair> { None }
fn as_sym(&self) -> Option<&Sym> { Some(self) }
}
impl fmt::Display for Sym {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}