[types] Fix up tests for Frac type

This commit is contained in:
Eryn Wells 2018-09-07 17:50:02 -07:00
parent 5aca4cfbe4
commit d5e6913197
3 changed files with 83 additions and 31 deletions

View file

@ -5,7 +5,7 @@
use std::any::Any;
use std::fmt;
use std::ops::{Add, Mul};
use number::arith::{GCD, LCM};
use number::arith::GCD;
use number::{Int, Number};
use object::{Obj, Object};
@ -15,7 +15,7 @@ pub struct Frac { p: Int, q: Int }
impl Frac {
pub fn new(p: Int, q: Int) -> Result<Frac, ()> {
if q == Int(0) {
if q.is_zero() {
// TODO: Return a more specific error about dividing by zero.
Err(())
} else {
@ -23,31 +23,28 @@ impl Frac {
}
}
pub fn from_ints(p: i64, q: i64) -> Result<Frac, ()> {
Frac::new(Int(p), Int(q))
}
fn reduced(self) -> Frac {
let gcd = self.p.gcd(self.q);
Frac { p: self.p / gcd, q: self.q / gcd }
}
fn _add(self, rhs: Frac) -> Frac {
let lcm = self.q.lcm(rhs.q);
let p = self.p * lcm + rhs.p * lcm;
let q = self.q * lcm;
Frac::new(p, q).unwrap()
}
let p = self.p * rhs.q + rhs.p * self.q;
let q = self.q * rhs.q;
Frac{p,q}.reduced()
}
impl Number for Frac {
fn as_int(&self) -> Option<Int> {
if self.q == Int(1) {
Some(self.p)
} else {
None
fn _mul(self, rhs: Frac) -> Frac {
let p = self.p * rhs.p;
let q = self.q * rhs.q;
Frac{p,q}.reduced()
}
}
fn as_frac(&self) -> Option<Frac> { Frac::new(self.p, self.q).ok() }
}
impl Add for Frac {
type Output = Frac;
fn add(self, rhs: Self) -> Self::Output {
@ -75,6 +72,41 @@ impl fmt::Display for Frac {
}
}
impl Mul for Frac {
type Output = Frac;
fn mul(self, rhs: Self) -> Self::Output {
self._mul(rhs)
}
}
impl<'a> Mul<Frac> for &'a Frac {
type Output = Frac;
fn mul(self, rhs: Frac) -> Self::Output {
self._mul(rhs)
}
}
impl<'a, 'b> Mul<&'a Frac> for &'b Frac {
type Output = Frac;
fn mul(self, rhs: &Frac) -> Self::Output {
self._mul(*rhs)
}
}
impl Number for Frac {
fn as_int(&self) -> Option<Int> {
if self.q == Int(1) {
Some(self.p)
} else {
None
}
}
fn as_frac(&self) -> Option<Frac> { Frac::new(self.p, self.q).ok() }
fn is_zero(&self) -> bool { self.p.is_zero() }
}
impl Object for Frac {
fn as_any(&self) -> &Any { self }
fn as_num(&self) -> Option<&Number> { Some(self) }
@ -100,29 +132,43 @@ impl<'a> PartialEq<Number + 'a> for Frac {
#[cfg(test)]
mod tests {
use number::Number;
use super::*;
#[test]
fn fracs_with_zero_q_are_invalid() {
assert!(Frac::from_ints(3, 0).is_err())
}
#[test]
fn equal_fracs_are_equal() {
assert_eq!(Frac(Int(3), Int(2)), Frac(Int(3), Int(2)));
assert_ne!(Frac(Int(12), Int(4)), Frac(Int(9), Int(7)));
assert_eq!(Frac::from_ints(3, 2), Frac::from_ints(3, 2));
assert_ne!(Frac::from_ints(12, 4), Frac::from_ints(9, 7));
}
#[test]
fn fracs_should_reduce_to_ints_where_possible() {
let rational_as_integer = Frac(Int(3), Int(1)).as_int();
assert!(rational_as_integer.is_some());
// Oh my god this line is so dumb.
let fr = Frac::from_ints(3, 1).unwrap();
assert_eq!(fr.as_int(), Some(Int(3)));
}
#[test]
fn fracs_should_not_reduce_to_ints_where_impossible() {
let rational_as_integer = Frac(Int(3), Int(2)).as_int();
assert!(rational_as_integer.is_none());
let fr = Frac::from_ints(3, 2).unwrap();
assert_eq!(fr.as_int(), None);
}
#[test]
fn fracs_are_exact() {
assert!(Frac(Int(4), Int(2)).is_exact());
let fr = Frac::from_ints(4, 2).unwrap();
assert!(fr.is_exact());
}
#[test]
fn fracs_can_add() {
let a = Frac::from_ints(5, 6).unwrap();
let b = Frac::from_ints(2, 3).unwrap();
let r = Frac::from_ints(3, 2).unwrap();
assert_eq!(a + b, r);
}
}

View file

@ -12,6 +12,10 @@ use object::{Obj, Object};
#[derive(Copy, Clone, Debug, Eq, Ord, PartialEq, PartialOrd)]
pub struct Int(pub i64);
impl Int {
pub fn zero() -> Int { Int(0) }
}
impl Add for Int {
type Output = Int;
fn add(self, rhs: Self) -> Self::Output {
@ -63,25 +67,25 @@ impl<'a, 'b> Div<&'a Int> for &'b Int {
impl GCD for Int {
fn gcd(self, other: Int) -> Int {
let (mut a, mut b) = if self > other {
(self.0, other.0)
(self, other)
} else {
(other.0, self.0)
(other, self)
};
while b != 0 {
while !b.is_zero() {
let r = a % b;
a = b;
b = r;
}
Int(a)
a
}
}
impl LCM for Int {
fn lcm(self, other: Int) -> Int {
if self.0 == 0 && other.0 == 0 {
Int(0)
Int::zero()
} else {
Int(self.0 * other.0 / self.gcd(other).0)
self * other / self.gcd(other)
}
}
}
@ -94,6 +98,7 @@ impl Object for Int {
impl Number for Int {
fn as_int(&self) -> Option<Int> { Some(*self) }
fn as_frac(&self) -> Option<Frac> { Frac::new(*self, Int(1)).ok() }
fn is_zero(&self) -> bool { self.0 == 0 }
}
impl Mul for Int {

View file

@ -29,6 +29,7 @@ pub trait Number:
fn as_frac(&self) -> Option<Frac> { None }
/// Return `true` if this Number is an exact representation of its value.
fn is_exact(&self) -> bool { true }
fn is_zero(&self) -> bool;
}
// TODO: Implement PartialEq myself cause there are some weird nuances to comparing numbers.