/* lexer.rs * Eryn Wells */ pub mod token; mod char; mod charset; mod number; mod str; use self::char::Lexable; use self::number::Exactness; use self::number::NumberBuilder; use self::number::Radix; use self::number::Sign; use self::str::CharAt; use self::str::RelativeIndexable; use self::token::Lex; use self::token::Token; type StateResult = Result, String>; #[derive(Debug)] enum State { Comment, Initial, Identifier, Dot, Hash, Number, NumberExactness, NumberDecimal, NumberRadix, NumberSign, Sign, String, } pub struct Lexer { input: String, begin: usize, forward: usize, line: u32, state: State, number_builder: NumberBuilder, } impl Lexer { pub fn new(input: &str) -> Lexer { Lexer { input: String::from(input), begin: 0, forward: 0, line: 1, state: State::Initial, number_builder: NumberBuilder::new(), } } } impl Lexer { fn begin_lexing(&mut self) { self.forward = self.begin; self.state = State::Initial; } /// Advance the forward pointer to the next character. fn advance(&mut self) { self.forward = self.input.index_after(self.forward); println!("> forward={}", self.forward); } /// Retract the forward pointer to the previous character. fn retract(&mut self) { self.forward = self.input.index_before(self.forward); println!("< forward={}", self.forward); } /// Advance the begin pointer to prepare for the next iteration. fn advance_begin(&mut self) { self.begin = self.input.index_after(self.forward); self.forward = self.begin; println!("> begin={}, forward={}", self.begin, self.forward); } fn handle_newline(&mut self) { self.line += 1; } /// Get the substring between the two input indexes. This is the value to give to a new Token instance. fn value(&self) -> String { self.input[self.begin .. self.forward].to_string() } } impl Lexer { // TODO: Use std::result::Result for these state_* methods. // https://doc.rust-lang.org/1.14.0/core/result/enum.Result.html /// Handle self.state == State::Initial fn state_initial(&mut self, c: char, token: &mut Option) { if c.is_left_paren() { *token = Some(Token::LeftParen(c.to_string())); } else if c.is_right_paren() { *token = Some(Token::RightParen(c.to_string())); } else if c.is_dot() { self.state = State::Dot; self.advance(); } else if c.is_hash() { self.state = State::Hash; self.advance(); } else if c.is_string_quote() { self.state = State::String; self.advance(); } else if let Some(sign) = Sign::from_char(c) { self.number_builder = NumberBuilder::new(); self.number_builder.sign(sign); self.state = State::Sign; self.advance(); } else if c.is_identifier_initial() { self.state = State::Identifier; self.advance(); } else if c.is_digit(10) { self.number_builder = NumberBuilder::new(); self.number_builder.extend_value(c); self.state = State::Number; self.advance(); } else if c.is_whitespace() { if c.is_newline() { self.handle_newline(); } self.advance_begin(); } else if c.is_comment_initial() { self.state = State::Comment; self.advance(); } else { assert!(false, "Invalid token character: {}", c); } } /// Handle self.state == State::Identifier fn state_identifier(&mut self, c: char, token: &mut Option) { if c.is_identifier_subsequent() { // Stay in Identifier state. self.advance(); } else if c.is_identifier_delimiter() { *token = Some(Token::Identifier(self.value())); self.retract(); } else { assert!(false, "Invalid token character: '{}'", c); } } fn state_dot(&mut self, c: char, token: &mut Option) { if c.is_identifier_delimiter() { *token = Some(Token::Dot); self.retract(); } else if c.is_digit(10) { self.number_builder = NumberBuilder::new(); self.number_builder.extend_decimal_value(c); self.state = State::NumberDecimal; self.advance(); } else { assert!(false, "Invalid token character: '{}'", c); } } fn state_hash(&mut self, c: char, token: &mut Option) { if c.is_boolean_true() || c.is_boolean_false() { *token = Some(Token::Boolean(c.is_boolean_true())); self.advance(); } else if c.is_left_paren() { *token = Some(Token::LeftVectorParen); self.advance(); } else if let Some(radix) = Radix::from_char(c) { self.number_builder.radix(radix); self.state = State::NumberRadix; self.advance(); } else if let Some(exactness) = Exactness::from_char(c) { self.number_builder.exact(exactness); self.state = State::NumberExactness; self.advance(); } else { assert!(false, "Invalid token character: '{}'", c); } } fn state_number(&mut self, c: char, token: &mut Option) { if c.is_digit(self.number_builder.radix_value()) { self.number_builder.extend_value(c); self.advance(); } else if c.is_dot() { self.state = State::NumberDecimal; self.advance(); } else if c.is_identifier_delimiter() { *token = Some(Token::Number(self.number_builder.resolve())); self.retract(); } else { assert!(false, "Invalid token character: '{}'", c); } } fn state_number_exactness(&mut self, c: char, token: &mut Option) { if c.is_hash() { self.state = State::Hash; self.advance(); } else if let Some(sign) = Sign::from_char(c) { self.number_builder.sign(sign); self.state = State::NumberSign; self.advance(); } else if c.is_digit(self.number_builder.radix_value()) { self.number_builder.extend_value(c); self.state = State::Number; self.advance(); } else { assert!(false, "Invalid token character: '{}'", c); } } fn state_number_decimal(&mut self, c: char, token: &mut Option) { if c.is_digit(Radix::Dec.value()) { self.number_builder.extend_decimal_value(c); self.advance(); } else if c.is_identifier_delimiter() { *token = Some(Token::Number(self.number_builder.resolve())); self.retract(); } else { assert!(false, "Invalid token character: '{}'", c); } } fn state_number_radix(&mut self, c: char, token: &mut Option) { if c.is_digit(self.number_builder.radix_value()) { self.number_builder.extend_value(c); self.state = State::Number; self.advance(); } else if c.is_dot() { self.state = State::NumberDecimal; self.advance(); } else if c.is_hash() { self.state = State::Hash; self.advance(); } else if let Some(sign) = Sign::from_char(c) { self.number_builder.sign(sign); self.state = State::NumberSign; self.advance(); } else { assert!(false, "Invalid token character: '{}'", c); } } fn state_number_sign(&mut self, c: char, token: &mut Option) { if c.is_digit(self.number_builder.radix_value()) { self.number_builder.extend_value(c); self.state = State::Number; self.advance(); } else if c.is_dot() { self.state = State::NumberDecimal; self.advance(); } else { assert!(false, "Invalid token character: '{}'", c); } } fn state_sign(&mut self, c: char, token: &mut Option) { if c.is_digit(Radix::Dec.value()) { self.number_builder.extend_value(c); self.state = State::Number; self.advance(); } else if c.is_identifier_delimiter() { *token = Some(Token::Identifier(self.value())); self.retract(); } else { assert!(false, "Invalid token character: '{}'", c); } } fn state_string(&mut self, c: char, token: &mut Option) { self.advance(); if c.is_string_quote() { *token = Some(Token::String(self.value())); } } fn state_comment(&mut self, c: char, token: &mut Option) { if c.is_newline() { self.handle_newline(); *token = Some(Token::Comment(self.value())); } else if c.is_eof() { *token = Some(Token::Comment(self.value())); } // Consume all characters. self.advance(); } } impl Iterator for Lexer { type Item = Lex; fn next(&mut self) -> Option { self.begin_lexing(); if self.begin == self.input.len() { return None; } let mut token: Option = None; println!("Lexing '{}'", &self.input[self.begin ..]); while token.is_none() { let c = match self.input.char_at(self.forward) { Some(c) => c, None => '\0', }; println!("{:?}! c='{}'", self.state, c); let previous_forward = self.forward; match self.state { State::Initial => self.state_initial(c, &mut token), State::Identifier => self.state_identifier(c, &mut token), State::Dot => self.state_dot(c, &mut token), State::Hash => self.state_hash(c, &mut token), State::Number => self.state_number(c, &mut token), State::NumberExactness => self.state_number_exactness(c, &mut token), State::NumberDecimal => self.state_number_decimal(c, &mut token), State::NumberRadix => self.state_number_radix(c, &mut token), State::NumberSign => self.state_number_sign(c, &mut token), State::Sign => self.state_sign(c, &mut token), State::String => self.state_string(c, &mut token), State::Comment => self.state_comment(c, &mut token), } assert!(token.is_some() || self.forward != previous_forward, "No lexing progress made!"); } self.advance_begin(); match token { Some(t) => Some(Lex::new(t)), None => None, } } } // // UNIT TESTING // #[cfg(test)] mod tests { use std::iter::Iterator; use super::*; use super::number::*; use super::token::*; #[test] fn finds_parens() { check_single_token("(", Token::LeftParen(String::from("("))); check_single_token(")", Token::RightParen(String::from(")"))); check_single_token("#(", Token::LeftVectorParen); } #[test] fn finds_dots() { check_single_token(".", Token::Dot); let mut lexer = Lexer::new("abc . abc"); assert_next_token(&mut lexer, &Token::Identifier(String::from("abc"))); assert_next_token(&mut lexer, &Token::Dot); assert_next_token(&mut lexer, &Token::Identifier(String::from("abc"))); } #[test] fn finds_identifiers() { let tok = |s: &str| { check_single_token(s, Token::Identifier(String::from(s))); }; tok("abc"); tok("number?"); tok("+"); tok("-"); } #[test] fn finds_booleans() { check_single_token("#t", Token::Boolean(true)); check_single_token("#f", Token::Boolean(false)); } #[test] fn finds_comments() { let s = "; a comment"; check_single_token(s, Token::Comment(String::from(s))); } #[test] fn finds_strings() { check_single_token("\"\"", Token::String(String::from("\"\""))); check_single_token("\"abc\"", Token::String(String::from("\"abc\""))); } #[test] fn finds_numbers() { check_single_token(".34", Token::Number(Number::new(0.34))); check_single_token("0.34", Token::Number(Number::new(0.34))); } #[test] fn finds_negative_numbers() { check_single_token("-3", Token::Number(Number::from_int(-3))); check_single_token("-0", Token::Number(Number::from_int(-0))); check_single_token("-0.56", Token::Number(Number::new(-0.56))); check_single_token("-3.14159", Token::Number(Number::new(-3.14159))); } #[test] fn finds_bin_numbers() { check_single_token("#b0", Token::Number(Number::from_int(0b0))); check_single_token("#b01011", Token::Number(Number::from_int(0b01011))); } #[test] fn finds_dec_numbers() { check_single_token("34", Token::Number(Number::new(34.0))); check_single_token("#d89", Token::Number(Number::from_int(89))); } #[test] fn finds_oct_numbers() { check_single_token("#o45", Token::Number(Number::from_int(0o45))); } #[test] fn finds_exact_numbers() { check_single_token("#e45", Token::Number(Number::from_int(45))); check_single_token("#e-45", Token::Number(Number::from_int(-45))); } #[test] fn finds_hex_numbers() { check_single_token("#h4A65", Token::Number(Number::from_int(0x4A65))); } #[test] fn lexes_simple_sexpression() { let mut lexer = Lexer::new("(+ 3.4 6.8)"); assert_next_token(&mut lexer, &Token::LeftParen(String::from("("))); assert_next_token(&mut lexer, &Token::Identifier(String::from("+"))); assert_next_token(&mut lexer, &Token::Number(Number::new(3.4))); assert_next_token(&mut lexer, &Token::Number(Number::new(6.8))); assert_next_token(&mut lexer, &Token::RightParen(String::from(")"))); } fn check_single_token(input: &str, expected: Token) { let mut lexer = Lexer::new(input); assert_next_token(&mut lexer, &expected); } fn assert_next_token(lexer: &mut Lexer, expected: &Token) { let lex = lexer.next().unwrap(); assert_eq!(lex.token, *expected); } }