sibil/src/lexer/mod.rs

744 lines
22 KiB
Rust

/* lexer.rs
* Eryn Wells <eryn@erynwells.me>
*/
pub mod token;
pub use self::token::Lex;
pub use self::token::Token;
mod char;
mod charset;
mod number;
mod str;
mod named_char {
use std::collections::HashSet;
use types::Char;
const ALARM: &'static str = "alarm";
const BACKSPACE: &'static str = "backspace";
const DELETE: &'static str = "delete";
const ESCAPE: &'static str = "escape";
const NEWLINE: &'static str = "newline";
const NULL: &'static str = "null";
const RETURN: &'static str = "return";
const SPACE: &'static str = "space";
const TAB: &'static str = "tab";
pub fn set() -> HashSet<&'static str> {
let mut set: HashSet<&'static str> = HashSet::new();
set.insert(ALARM);
set.insert(BACKSPACE);
set.insert(DELETE);
set.insert(ESCAPE);
set.insert(NEWLINE);
set.insert(NULL);
set.insert(RETURN);
set.insert(SPACE);
set.insert(TAB);
set
}
pub fn char_named_by(named: &str) -> Char {
Char::new(match named {
ALARM => '\x07',
BACKSPACE => '\x08',
DELETE => '\x7F',
ESCAPE => '\x1B',
NEWLINE => '\n',
NULL => '\0',
RETURN => '\r',
SPACE => ' ',
TAB => '\t',
_ => panic!("char_named_by called with invalid named char string")
})
}
}
use std::collections::HashSet;
use types::{Bool, Char};
use self::char::Lexable;
use self::number::Exactness;
use self::number::NumberBuilder;
use self::number::Radix;
use self::number::Sign;
use self::str::CharAt;
use self::str::RelativeIndexable;
type StateResult = Result<Option<Token>, String>;
trait HasResult {
fn has_token(&self) -> bool;
}
#[derive(Debug)]
enum State {
Char,
NamedChar(HashSet<&'static str>, String),
Comment,
Initial,
Id,
Dot,
Hash,
Number,
NumberExactness,
NumberDecimal,
NumberRadix,
NumberSign,
Sign,
String,
StringEscape,
}
pub fn lex(input: &str) -> Lexer {
Lexer::new(&input)
}
pub struct Lexer {
input: String,
begin: usize,
forward: usize,
line: usize,
line_offset: usize,
state: State,
number_builder: NumberBuilder,
string_value: String,
}
impl Lexer {
pub fn new(input: &str) -> Lexer {
Lexer {
input: String::from(input),
begin: 0,
forward: 0,
line: 1,
line_offset: 1,
state: State::Initial,
number_builder: NumberBuilder::new(),
string_value: String::new(),
}
}
}
impl Lexer {
fn begin_lexing(&mut self) {
self.forward = self.begin;
self.state = State::Initial;
}
/// Advance the forward pointer to the next character.
fn advance(&mut self) {
self.forward = self.input.index_after(self.forward);
self.line_offset += 1;
println!("> forward={}", self.forward);
}
/// Retract the forward pointer to the previous character.
fn retract(&mut self) {
self.forward = self.input.index_before(self.forward);
self.line_offset -= 1;
println!("< forward={}", self.forward);
}
/// Advance the begin pointer to prepare for the next iteration.
fn advance_begin(&mut self) {
self.begin = self.input.index_after(self.forward);
self.forward = self.begin;
println!("> begin={}, forward={}", self.begin, self.forward);
}
/// Update lexer state when it encounters a newline.
fn handle_newline(&mut self) {
self.line += 1;
self.line_offset = 1;
}
/// Get the substring between the two input indexes. This is the value to give to a new Token instance.
fn value(&self) -> String {
self.input[self.begin .. self.forward].to_string()
}
fn error_string(&self, message: String) -> String {
format!("{}:{}: {}", self.line, self.line_offset, message)
}
fn token_result(&self, token: Token) -> StateResult {
Ok(Some(token))
}
fn generic_error(&self, c: char) -> StateResult {
Err(self.error_string(format!("Invalid token character: {}", c)))
}
}
impl Lexer {
/// Handle self.state == State::Initial
fn state_initial(&mut self, c: char) -> StateResult {
if c.is_left_paren() {
return self.token_result(Token::LeftParen);
}
else if c.is_right_paren() {
return self.token_result(Token::RightParen);
}
else if c.is_dot() {
self.state = State::Dot;
self.advance();
}
else if c.is_hash() {
self.state = State::Hash;
self.advance();
}
else if c.is_quote() {
return self.token_result(Token::Quote);
}
else if c.is_string_quote() {
self.string_value = String::from("");
self.state = State::String;
self.advance();
}
else if let Some(sign) = Sign::from_char(c) {
self.number_builder = NumberBuilder::new();
self.number_builder.sign(sign);
self.state = State::Sign;
self.advance();
}
else if c.is_identifier_initial() {
self.state = State::Id;
self.advance();
}
else if c.is_digit(10) {
self.number_builder = NumberBuilder::new();
self.number_builder.extend_value(c);
self.state = State::Number;
self.advance();
}
else if c.is_whitespace() {
if c.is_newline() {
self.handle_newline();
}
self.advance_begin();
}
else if c.is_comment_initial() {
self.state = State::Comment;
self.advance();
}
else {
return self.generic_error(c);
}
Ok(None)
}
/// Handle self.state == State::Id
fn state_identifier(&mut self, c: char) -> StateResult {
if c.is_identifier_subsequent() {
// Stay in Id state.
self.advance();
}
else if c.is_identifier_delimiter() {
let value = self.value();
self.retract();
return self.token_result(Token::Id(value));
}
else {
return self.generic_error(c);
}
Ok(None)
}
/// Handle self.state == State::Char
fn state_char(&mut self, c: char) -> StateResult {
self.advance();
let lower_c = c.to_lowercase().collect::<String>();
let mut candidates: HashSet<&str> = HashSet::new();
for c in named_char::set().iter() {
if c.starts_with(&lower_c) {
candidates.insert(c);
}
}
if candidates.len() > 0 {
self.state = State::NamedChar(candidates, lower_c);
} else {
return self.token_result(Token::Character(Char::new(c)));
}
Ok(None)
}
/// Handle self.state == State::NamedChar
fn state_named_char(&mut self, c: char) -> StateResult {
let (candidates, mut progress) = match self.state {
State::NamedChar(ref candidates, ref progress) => (candidates.clone(), progress.clone()),
_ => panic!("Called state_named_char without being in NamedChar state")
};
if c.is_identifier_delimiter() || c.is_eof() {
if progress.len() == 1 {
self.retract();
return self.token_result(Token::Character(Char::new(progress.chars().next().unwrap())));
}
else {
return self.generic_error(c);
}
}
progress.push(c);
let candidates: HashSet<&str> = {
let filtered = candidates.iter().filter(|c| c.starts_with(&progress)).map(|c| *c);
filtered.collect()
};
if candidates.len() == 1 {
let candidate = *candidates.iter().next().unwrap();
if candidate == &progress {
self.token_result(Token::Character(named_char::char_named_by(&progress)))
}
else {
self.state = State::NamedChar(candidates, progress);
self.advance();
Ok(None)
}
}
else if candidates.len() > 1 {
self.state = State::NamedChar(candidates, progress);
self.advance();
Ok(None)
}
else {
self.generic_error(c)
}
}
/// Handle self.state == State::Dot
fn state_dot(&mut self, c: char) -> StateResult {
if c.is_identifier_delimiter() {
self.retract();
return self.token_result(Token::Dot);
}
else if c.is_digit(10) {
self.number_builder = NumberBuilder::new();
self.number_builder.extend_decimal_value(c);
self.state = State::NumberDecimal;
self.advance();
}
else {
return self.generic_error(c);
}
Ok(None)
}
/// Handle self.state == State::Hash
fn state_hash(&mut self, c: char) -> StateResult {
if c.is_boolean_true() || c.is_boolean_false() {
self.advance();
return self.token_result(Token::Boolean(Bool::new(c.is_boolean_true())));
}
else if c.is_left_paren() {
self.advance();
return self.token_result(Token::LeftVectorParen);
}
else if c.is_character_leader() {
self.state = State::Char;
self.advance();
}
else if let Some(radix) = Radix::from_char(c) {
self.number_builder.radix(radix);
self.state = State::NumberRadix;
self.advance();
}
else if let Some(exactness) = Exactness::from_char(c) {
self.number_builder.exact(exactness);
self.state = State::NumberExactness;
self.advance();
}
else {
return self.generic_error(c);
}
Ok(None)
}
/// Handle self.state == State::Number
fn state_number(&mut self, c: char) -> StateResult {
if c.is_digit(self.number_builder.radix_value()) {
self.number_builder.extend_value(c);
self.advance();
}
else if c.is_dot() {
self.state = State::NumberDecimal;
self.advance();
}
else if c.is_identifier_delimiter() {
self.retract();
return self.token_result(Token::Number(self.number_builder.resolve()));
}
else {
return self.generic_error(c);
}
Ok(None)
}
fn state_number_exactness(&mut self, c: char) -> StateResult {
if c.is_hash() {
self.state = State::Hash;
self.advance();
}
else if let Some(sign) = Sign::from_char(c) {
self.number_builder.sign(sign);
self.state = State::NumberSign;
self.advance();
}
else if c.is_digit(self.number_builder.radix_value()) {
self.number_builder.extend_value(c);
self.state = State::Number;
self.advance();
}
else {
return self.generic_error(c);
}
Ok(None)
}
fn state_number_decimal(&mut self, c: char) -> StateResult {
if c.is_digit(Radix::Dec.value()) {
self.number_builder.extend_decimal_value(c);
self.advance();
}
else if c.is_identifier_delimiter() {
self.retract();
return self.token_result(Token::Number(self.number_builder.resolve()));
}
else {
return self.generic_error(c);
}
Ok(None)
}
fn state_number_radix(&mut self, c: char) -> StateResult {
if c.is_digit(self.number_builder.radix_value()) {
self.number_builder.extend_value(c);
self.state = State::Number;
self.advance();
}
else if c.is_dot() {
self.state = State::NumberDecimal;
self.advance();
}
else if c.is_hash() {
self.state = State::Hash;
self.advance();
}
else if let Some(sign) = Sign::from_char(c) {
self.number_builder.sign(sign);
self.state = State::NumberSign;
self.advance();
}
else {
return self.generic_error(c);
}
Ok(None)
}
fn state_number_sign(&mut self, c: char) -> StateResult {
if c.is_digit(self.number_builder.radix_value()) {
self.number_builder.extend_value(c);
self.state = State::Number;
self.advance();
}
else if c.is_dot() {
self.state = State::NumberDecimal;
self.advance();
}
else {
return self.generic_error(c);
}
Ok(None)
}
fn state_sign(&mut self, c: char) -> StateResult {
if c.is_digit(Radix::Dec.value()) {
self.number_builder.extend_value(c);
self.state = State::Number;
self.advance();
}
else if c.is_identifier_delimiter() {
let value = self.value();
self.retract();
return self.token_result(Token::Id(value));
}
else {
return self.generic_error(c);
}
Ok(None)
}
fn state_string(&mut self, c: char) -> StateResult {
self.advance();
if c.is_string_quote() {
return self.token_result(Token::String(self.string_value.clone()));
}
else if c.is_string_escape_leader() {
self.state = State::StringEscape;
}
else {
self.string_value.push(c);
}
Ok(None)
}
fn state_string_escape(&mut self, c: char) -> StateResult {
let char_to_push = match c {
'0' => '\0',
'n' => '\n',
't' => '\t',
'"' => '"',
'\\' => '\\',
_ => return Err(self.error_string(format!("Invalid string escape character: {}", c))),
};
self.string_value.push(char_to_push);
self.state = State::String;
self.advance();
Ok(None)
}
fn state_comment(&mut self, c: char) -> StateResult {
if c.is_newline() {
self.handle_newline();
return self.token_result(Token::Comment(self.value()));
}
else if c.is_eof() {
return self.token_result(Token::Comment(self.value()));
}
self.advance();
Ok(None)
}
}
impl Iterator for Lexer {
type Item = Lex;
fn next(&mut self) -> Option<Lex> {
self.begin_lexing();
if self.begin == self.input.len() {
return None;
}
let mut token: Option<Token> = None;
println!("Lexing '{}'", &self.input[self.begin ..]);
while token.is_none() {
let c = match self.input.char_at(self.forward) {
Some(c) => c,
None => '\0',
};
println!("{:?}! c='{}'", self.state, c);
let previous_forward = self.forward;
let result = match self.state {
State::Char=> self.state_char(c),
State::NamedChar(_, _) => self.state_named_char(c),
State::Comment => self.state_comment(c),
State::Dot => self.state_dot(c),
State::Hash => self.state_hash(c),
State::Id => self.state_identifier(c),
State::Initial => self.state_initial(c),
State::Number => self.state_number(c),
State::NumberDecimal => self.state_number_decimal(c),
State::NumberExactness => self.state_number_exactness(c),
State::NumberRadix => self.state_number_radix(c),
State::NumberSign => self.state_number_sign(c),
State::Sign => self.state_sign(c),
State::String => self.state_string(c),
State::StringEscape => self.state_string_escape(c),
};
assert!(result.has_token() || self.forward != previous_forward, "No lexing progress made!");
if result.has_token() {
token = result.ok().unwrap();
}
else if result.is_err() {
assert!(false, "{}", result.err().unwrap());
}
}
self.advance_begin();
match token {
Some(t) => Some(Lex::new(t, self.line, self.line_offset)),
None => None,
}
}
}
impl HasResult for StateResult {
fn has_token(&self) -> bool {
match *self {
Ok(ref token) => match *token {
Some(_) => true,
None => false,
},
Err(_) => false
}
}
}
//
// UNIT TESTING
//
#[cfg(test)]
mod tests {
use types::{Bool, Char, Number};
use std::iter::Iterator;
use super::*;
#[test]
fn finds_parens() {
check_single_token("(", Token::LeftParen);
check_single_token(")", Token::RightParen);
check_single_token("#(", Token::LeftVectorParen);
}
#[test]
fn finds_characters() {
check_single_token("#\\a", Token::Character(Char::new('a')));
check_single_token("#\\n", Token::Character(Char::new('n')));
check_single_token("#\\s", Token::Character(Char::new('s')));
}
#[test]
fn finds_named_characters() {
check_single_token("#\\newline", Token::Character(Char::new('\n')));
check_single_token("#\\null", Token::Character(Char::new('\0')));
check_single_token("#\\space", Token::Character(Char::new(' ')));
}
#[test]
fn finds_dots() {
check_single_token(".", Token::Dot);
let mut lexer = Lexer::new("abc . abc");
assert_next_token(&mut lexer, &Token::Id(String::from("abc")));
assert_next_token(&mut lexer, &Token::Dot);
assert_next_token(&mut lexer, &Token::Id(String::from("abc")));
}
#[test]
fn finds_identifiers() {
let tok = |s: &str| { check_single_token(s, Token::Id(String::from(s))); };
tok("abc");
tok("number?");
tok("+");
tok("-");
}
#[test]
fn finds_booleans() {
check_single_token("#t", Token::Boolean(Bool::new(true)));
check_single_token("#f", Token::Boolean(Bool::new(false)));
}
#[test]
fn finds_comments() {
let s = "; a comment";
check_single_token(s, Token::Comment(String::from(s)));
}
#[test]
fn finds_escaped_characters_in_strings() {
check_single_token("\"\\\\\"", Token::String(String::from("\\")));
check_single_token("\"\\\"\"", Token::String(String::from("\"")));
check_single_token("\"\\n\"", Token::String(String::from("\n")));
}
#[test]
fn finds_numbers() {
check_single_token(".34", Token::Number(Number::from_float(0.34)));
check_single_token("0.34", Token::Number(Number::from_float(0.34)));
}
#[test]
fn finds_negative_numbers() {
check_single_token("-3", Token::Number(Number::from_int(-3)));
check_single_token("-0", Token::Number(Number::from_int(-0)));
check_single_token("-0.56", Token::Number(Number::from_float(-0.56)));
check_single_token("-3.14159", Token::Number(Number::from_float(-3.14159)));
}
#[test]
fn finds_bin_numbers() {
check_single_token("#b0", Token::Number(Number::from_int(0b0)));
check_single_token("#b01011", Token::Number(Number::from_int(0b01011)));
}
#[test]
fn finds_dec_numbers() {
check_single_token("34", Token::Number(Number::from_float(34.0)));
check_single_token("#d89", Token::Number(Number::from_int(89)));
}
#[test]
fn finds_oct_numbers() {
check_single_token("#o45", Token::Number(Number::from_int(0o45)));
}
#[test]
fn finds_exact_numbers() {
check_single_token("#e45", Token::Number(Number::from_int(45)));
check_single_token("#e-45", Token::Number(Number::from_int(-45)));
}
#[test]
fn finds_hex_numbers() {
check_single_token("#h4A65", Token::Number(Number::from_int(0x4A65)));
}
#[test]
fn finds_quote() {
check_single_token("'", Token::Quote);
}
#[test]
fn finds_strings() {
check_single_token("\"\"", Token::String(String::from("")));
check_single_token("\"abc\"", Token::String(String::from("abc")));
}
#[test]
fn lexes_simple_expression() {
check_tokens("(+ 3.4 6.8)", vec![
Token::LeftParen,
Token::Id(String::from("+")),
Token::Number(Number::from_float(3.4)),
Token::Number(Number::from_float(6.8)),
Token::RightParen]);
}
#[test]
fn lexes_quoted_identifier() {
check_tokens("'abc", vec![Token::Quote, Token::Id(String::from("abc"))]);
}
fn check_single_token(input: &str, expected: Token) {
let mut lexer = Lexer::new(input);
assert_next_token(&mut lexer, &expected);
}
fn check_tokens(input: &str, expected: Vec<Token>) {
let lexer = Lexer::new(input);
let mut expected_iter = expected.iter();
for lex in lexer {
if let Some(expected_token) = expected_iter.next() {
assert_eq!(lex.token, *expected_token);
}
else {
assert!(false, "Found a token we didn't expect: {:?}", lex.token);
}
}
// TODO: Check that all expected tokens are consumed.
}
fn assert_next_token(lexer: &mut Lexer, expected: &Token) {
let lex = lexer.next().unwrap();
assert_eq!(lex.token, *expected);
}
}