Retry limit and mention separation

This commit is contained in:
Mispy 2013-11-18 02:59:15 -08:00
parent c1d91d1693
commit 61c5caee4d
5 changed files with 65 additions and 21 deletions

View file

@ -7,7 +7,7 @@ require 'digest/md5'
module Ebooks
class Model
attr_accessor :hash, :sentences, :generator, :keywords
attr_accessor :hash, :sentences, :mentions, :keywords
def self.consume(txtpath)
Model.new.consume(txtpath)
@ -22,23 +22,44 @@ module Ebooks
@hash = Digest::MD5.hexdigest(File.read(txtpath))
text = File.read(txtpath)
log "Removing commented lines and mention tokens"
log "Removing commented lines and sorting mentions"
lines = text.split("\n")
keeping = []
mentions = []
lines.each do |l|
next if l.start_with?('#') || l.include?('RT')
processed = l.split.reject { |w| w.include?('@') || w.include?('http') }
keeping << processed.join(' ')
next if l.start_with?('#') # Remove commented lines
next if l.include?('RT') || l.include?('MT') # Remove soft retweets
if l.include?('@')
mentions << l
else
keeping << l
end
end
text = NLP.normalize(keeping.join("\n"))
text = NLP.normalize(keeping.join("\n")) # Normalize weird characters
mention_text = NLP.normalize(mentions.join("\n"))
log "Segmenting text into sentences"
sentences = NLP.sentences(text)
statements = NLP.sentences(text)
mentions = NLP.sentences(mention_text)
log "Tokenizing #{sentences.length} sentences"
@sentences = sentences.map { |sent| NLP.tokenize(sent) }
log "Tokenizing #{statements.length} statements and #{mentions.length} mentions"
@sentences = []
@mentions = []
statements.each do |s|
@sentences << NLP.tokenize(s).reject do |t|
t.start_with?('@') || t.start_with?('http')
end
end
mentions.each do |s|
@mentions << NLP.tokenize(s).reject do |t|
t.start_with?('@') || t.start_with?('http')
end
end
log "Ranking keywords"
@keywords = NLP.keywords(@sentences)
@ -72,38 +93,55 @@ module Ebooks
tweet.length <= limit && !NLP.unmatched_enclosers?(tweet)
end
def make_statement(limit=140, generator=nil)
def make_statement(limit=140, generator=nil, retry_limit=10)
responding = !generator.nil?
generator ||= SuffixGenerator.build(@sentences)
retries = 0
tweet = ""
while (tokens = generator.generate(3, :bigrams)) do
next if tokens.length <= 3 && !responding
break if valid_tweet?(tokens, limit)
retries += 1
break if retries >= retry_limit
end
if @sentences.include?(tokens) && tokens.length > 3 # We made a verbatim tweet by accident
if verbatim?(tokens) && tokens.length > 3 # We made a verbatim tweet by accident
while (tokens = generator.generate(3, :unigrams)) do
break if valid_tweet?(tokens, limit) && !@sentences.include?(tokens)
break if valid_tweet?(tokens, limit) && !verbatim?(tokens)
retries += 1
break if retries >= retry_limit
end
end
tweet = NLP.reconstruct(tokens)
if retries >= retry_limit
log "Unable to produce valid non-verbatim tweet; using \"#{tweet}\""
end
fix tweet
end
# Test if a sentence has been copied verbatim from original
def verbatim?(tokens)
@sentences.include?(tokens) || @mentions.include?(tokens)
end
# Finds all relevant tokenized sentences to given input by
# comparing non-stopword token overlaps
def relevant_sentences(input)
def find_relevant(sentences, input)
relevant = []
slightly_relevant = []
tokenized = NLP.tokenize(input)
tokenized = NLP.tokenize(input).map(&:downcase)
@sentences.each do |sent|
sentences.each do |sent|
tokenized.each do |token|
if sent.include?(token)
if sent.map(&:downcase).include?(token)
relevant << sent unless NLP.stopword?(token)
slightly_relevant << sent
end
@ -115,9 +153,9 @@ module Ebooks
# Generates a response by looking for related sentences
# in the corpus and building a smaller generator from these
def make_response(input, limit=140)
# First try
relevant, slightly_relevant = relevant_sentences(input)
def make_response(input, limit=140, sentences=@mentions)
# Prefer mentions
relevant, slightly_relevant = find_relevant(sentences, input)
if relevant.length >= 3
generator = SuffixGenerator.build(relevant)
@ -125,6 +163,8 @@ module Ebooks
elsif slightly_relevant.length >= 5
generator = SuffixGenerator.build(slightly_relevant)
make_statement(limit, generator)
elsif sentences.equal?(@mentions)
make_response(input, limit, @sentences)
else
make_statement(limit)
end