181 lines
4.7 KiB
Ruby
181 lines
4.7 KiB
Ruby
#!/usr/bin/env ruby
|
|
# encoding: utf-8
|
|
|
|
require 'json'
|
|
require 'set'
|
|
require 'digest/md5'
|
|
|
|
module Ebooks
|
|
class Model
|
|
attr_accessor :hash, :sentences, :mentions, :keywords
|
|
|
|
def self.consume(txtpath)
|
|
Model.new.consume(txtpath)
|
|
end
|
|
|
|
def self.load(path)
|
|
Marshal.load(File.open(path, 'rb') { |f| f.read })
|
|
end
|
|
|
|
def consume(path)
|
|
content = File.read(path)
|
|
@hash = Digest::MD5.hexdigest(content)
|
|
|
|
if path.split('.')[-1] == "json"
|
|
log "Reading json corpus from #{path}"
|
|
lines = JSON.parse(content, symbolize_names: true).map do |tweet|
|
|
tweet[:text]
|
|
end
|
|
else
|
|
log "Reading plaintext corpus from #{path}"
|
|
lines = content.split("\n")
|
|
end
|
|
|
|
log "Removing commented lines and sorting mentions"
|
|
|
|
keeping = []
|
|
mentions = []
|
|
lines.each do |l|
|
|
next if l.start_with?('#') # Remove commented lines
|
|
next if l.include?('RT') || l.include?('MT') # Remove soft retweets
|
|
|
|
if l.include?('@')
|
|
mentions << l
|
|
else
|
|
keeping << l
|
|
end
|
|
end
|
|
text = NLP.normalize(keeping.join("\n")) # Normalize weird characters
|
|
mention_text = NLP.normalize(mentions.join("\n"))
|
|
|
|
log "Segmenting text into sentences"
|
|
|
|
statements = NLP.sentences(text)
|
|
mentions = NLP.sentences(mention_text)
|
|
|
|
log "Tokenizing #{statements.length} statements and #{mentions.length} mentions"
|
|
@sentences = []
|
|
@mentions = []
|
|
|
|
statements.each do |s|
|
|
@sentences << NLP.tokenize(s).reject do |t|
|
|
t.start_with?('@') || t.start_with?('http')
|
|
end
|
|
end
|
|
|
|
mentions.each do |s|
|
|
@mentions << NLP.tokenize(s).reject do |t|
|
|
t.start_with?('@') || t.start_with?('http')
|
|
end
|
|
end
|
|
|
|
log "Ranking keywords"
|
|
@keywords = NLP.keywords(@sentences)
|
|
|
|
self
|
|
end
|
|
|
|
def save(path)
|
|
File.open(path, 'wb') do |f|
|
|
f.write(Marshal.dump(self))
|
|
end
|
|
self
|
|
end
|
|
|
|
def fix(tweet)
|
|
# This seems to require an external api call
|
|
#begin
|
|
# fixer = NLP.gingerice.parse(tweet)
|
|
# log fixer if fixer['corrections']
|
|
# tweet = fixer['result']
|
|
#rescue Exception => e
|
|
# log e.message
|
|
# log e.backtrace
|
|
#end
|
|
|
|
NLP.htmlentities.decode tweet
|
|
end
|
|
|
|
def valid_tweet?(tokens, limit)
|
|
tweet = NLP.reconstruct(tokens)
|
|
tweet.length <= limit && !NLP.unmatched_enclosers?(tweet)
|
|
end
|
|
|
|
def make_statement(limit=140, generator=nil, retry_limit=10)
|
|
responding = !generator.nil?
|
|
generator ||= SuffixGenerator.build(@sentences)
|
|
|
|
retries = 0
|
|
tweet = ""
|
|
|
|
while (tokens = generator.generate(3, :bigrams)) do
|
|
next if tokens.length <= 3 && !responding
|
|
break if valid_tweet?(tokens, limit)
|
|
|
|
retries += 1
|
|
break if retries >= retry_limit
|
|
end
|
|
|
|
if verbatim?(tokens) && tokens.length > 3 # We made a verbatim tweet by accident
|
|
while (tokens = generator.generate(3, :unigrams)) do
|
|
break if valid_tweet?(tokens, limit) && !verbatim?(tokens)
|
|
|
|
retries += 1
|
|
break if retries >= retry_limit
|
|
end
|
|
end
|
|
|
|
tweet = NLP.reconstruct(tokens)
|
|
|
|
if retries >= retry_limit
|
|
log "Unable to produce valid non-verbatim tweet; using \"#{tweet}\""
|
|
end
|
|
|
|
fix tweet
|
|
end
|
|
|
|
# Test if a sentence has been copied verbatim from original
|
|
def verbatim?(tokens)
|
|
@sentences.include?(tokens) || @mentions.include?(tokens)
|
|
end
|
|
|
|
# Finds all relevant tokenized sentences to given input by
|
|
# comparing non-stopword token overlaps
|
|
def find_relevant(sentences, input)
|
|
relevant = []
|
|
slightly_relevant = []
|
|
|
|
tokenized = NLP.tokenize(input).map(&:downcase)
|
|
|
|
sentences.each do |sent|
|
|
tokenized.each do |token|
|
|
if sent.map(&:downcase).include?(token)
|
|
relevant << sent unless NLP.stopword?(token)
|
|
slightly_relevant << sent
|
|
end
|
|
end
|
|
end
|
|
|
|
[relevant, slightly_relevant]
|
|
end
|
|
|
|
# Generates a response by looking for related sentences
|
|
# in the corpus and building a smaller generator from these
|
|
def make_response(input, limit=140, sentences=@mentions)
|
|
# Prefer mentions
|
|
relevant, slightly_relevant = find_relevant(sentences, input)
|
|
|
|
if relevant.length >= 3
|
|
generator = SuffixGenerator.build(relevant)
|
|
make_statement(limit, generator)
|
|
elsif slightly_relevant.length >= 5
|
|
generator = SuffixGenerator.build(slightly_relevant)
|
|
make_statement(limit, generator)
|
|
elsif sentences.equal?(@mentions)
|
|
make_response(input, limit, @sentences)
|
|
else
|
|
make_statement(limit)
|
|
end
|
|
end
|
|
end
|
|
end
|