chessfriend/board/src/bitboard/bitboard.rs

254 lines
6.3 KiB
Rust
Raw Normal View History

// Eryn Wells <eryn@erynwells.me>
use super::library::{library, FILES, RANKS};
use super::BitScanner;
use crate::Square;
use std::fmt;
use std::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, Not};
#[derive(Clone, Copy, Eq, Hash, PartialEq)]
pub(crate) struct BitBoard(pub(super) u64);
macro_rules! moves_getter {
($getter_name:ident) => {
pub fn $getter_name(sq: Square) -> BitBoard {
library().$getter_name(sq)
}
};
}
impl BitBoard {
pub const fn empty() -> BitBoard {
BitBoard(0)
}
pub fn new(bits: u64) -> BitBoard {
BitBoard(bits)
}
pub fn rank(rank: usize) -> BitBoard {
assert!(rank < 8);
RANKS[rank]
}
pub fn file(file: usize) -> BitBoard {
assert!(file < 8);
FILES[file]
}
moves_getter!(knight_moves);
moves_getter!(bishop_moves);
moves_getter!(rook_moves);
moves_getter!(queen_moves);
moves_getter!(king_moves);
pub fn is_empty(&self) -> bool {
self.0 == 0
}
pub fn has_piece_at(self, sq: Square) -> bool {
!(self & sq.into()).is_empty()
}
pub fn place_piece_at(&mut self, sq: Square) {
let sq_bb: BitBoard = sq.into();
*self |= sq_bb
}
fn remove_piece_at(&mut self, sq: Square) {
let sq_bb: BitBoard = sq.into();
*self &= !sq_bb
}
}
impl BitBoard {
pub(crate) fn occupied_squares(&self) -> impl Iterator<Item = Square> {
BitScanner::new(self.0)
.map(|x| u8::try_from(x))
.take_while(|x| x.is_ok())
.map(|x| Square::from_index(x.unwrap() as usize))
}
}
impl From<Square> for BitBoard {
fn from(value: Square) -> Self {
BitBoard(1 << value as u64)
}
}
impl fmt::Binary for BitBoard {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Delegate to u64's implementation of Binary.
fmt::Binary::fmt(&self.0, f)
}
}
impl fmt::LowerHex for BitBoard {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Delegate to u64's implementation of LowerHex.
fmt::LowerHex::fmt(&self.0, f)
}
}
impl fmt::UpperHex for BitBoard {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Delegate to u64's implementation of UpperHex.
fmt::UpperHex::fmt(&self.0, f)
}
}
impl fmt::Display for BitBoard {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let binary_ranks = format!("{:064b}", self.0)
.chars()
.rev()
.map(|c| String::from(c))
.collect::<Vec<String>>();
let mut ranks_written = 0;
for rank in binary_ranks.chunks(8).rev() {
let joined_rank = rank.join(" ");
write!(f, "{}", joined_rank)?;
ranks_written += 1;
if ranks_written < 8 {
write!(f, "\n")?;
}
}
Ok(())
}
}
impl fmt::Debug for BitBoard {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
f.debug_tuple("BitBoard")
.field(&format_args!("{:064b}", self.0))
.finish()
}
}
macro_rules! infix_op {
($trait_type:ident, $func_name:ident, $left_type:ty, $right_type:ty) => {
impl $trait_type<$right_type> for $left_type {
type Output = BitBoard;
#[inline]
fn $func_name(self, rhs: $right_type) -> Self::Output {
BitBoard($trait_type::$func_name(self.0, rhs.0))
}
}
};
}
macro_rules! assign_op {
($trait_type:ident, $func_name:ident, $left_type:ty) => {
impl $trait_type for $left_type {
#[inline]
fn $func_name(&mut self, rhs: Self) {
$trait_type::$func_name(&mut self.0, rhs.0)
}
}
};
}
infix_op!(BitAnd, bitand, BitBoard, BitBoard);
assign_op!(BitAndAssign, bitand_assign, BitBoard);
assign_op!(BitOrAssign, bitor_assign, BitBoard);
infix_op!(BitOr, bitor, BitBoard, BitBoard);
impl Not for BitBoard {
type Output = BitBoard;
#[inline]
fn not(self) -> Self::Output {
BitBoard(!self.0)
}
}
impl Not for &BitBoard {
type Output = BitBoard;
#[inline]
fn not(self) -> Self::Output {
BitBoard(!self.0)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::Square;
#[test]
fn display_and_debug() {
let bb = BitBoard::file(0) | BitBoard::file(3) | BitBoard::rank(7) | BitBoard::rank(4);
println!("{}", &bb);
println!("{:?}", &bb);
}
#[test]
fn rank() {
assert_eq!(BitBoard::rank(0).0, 0xFF, "Rank 1");
assert_eq!(BitBoard::rank(1).0, 0xFF00, "Rank 2");
assert_eq!(BitBoard::rank(2).0, 0xFF0000, "Rank 3");
assert_eq!(BitBoard::rank(3).0, 0xFF000000, "Rank 4");
assert_eq!(BitBoard::rank(4).0, 0xFF00000000, "Rank 5");
assert_eq!(BitBoard::rank(5).0, 0xFF0000000000, "Rank 6");
assert_eq!(BitBoard::rank(6).0, 0xFF000000000000, "Rank 7");
assert_eq!(BitBoard::rank(7).0, 0xFF00000000000000, "Rank 8");
}
#[test]
fn is_empty() {
assert!(BitBoard(0).is_empty());
assert!(!BitBoard(0xFF).is_empty());
}
#[test]
fn has_piece_at() {
let bb = BitBoard(0b1001100);
assert!(bb.has_piece_at(Square::C1));
assert!(!bb.has_piece_at(Square::B1));
}
#[test]
fn place_piece_at() {
let sq = Square::E4;
let mut bb = BitBoard(0b1001100);
bb.place_piece_at(sq);
assert!(bb.has_piece_at(sq));
}
#[test]
fn remove_piece_at() {
let sq = Square::A3;
let mut bb = BitBoard(0b1001100);
bb.remove_piece_at(sq);
assert!(!bb.has_piece_at(sq));
}
#[test]
fn single_rank_occupancy() {
let bb = BitBoard(0b01010100);
let expected_squares = [Square::G1, Square::E1, Square::C1];
for (a, b) in bb.occupied_squares().zip(expected_squares.iter().cloned()) {
assert_eq!(a, b);
}
}
#[test]
fn occupancy_spot_check() {
let bb =
BitBoard(0b10000000_00000000_00100000_00000100_00000000_00000000_00010000_00001000);
let expected_squares = [Square::H8, Square::F6, Square::C5, Square::E2, Square::D1];
for (a, b) in bb.occupied_squares().zip(expected_squares.iter().cloned()) {
assert_eq!(a, b);
}
}
}