terrain/Terrain2/Algorithms.swift
Eryn Wells 47df42c8e5 Add a basic Queue data structure
Implemented as a linked list.
2018-11-10 17:42:23 -05:00

382 lines
12 KiB
Swift

//
// Algorithms.swift
// Terrain2
//
// Created by Eryn Wells on 11/4/18.
// Copyright © 2018 Eryn Wells. All rights reserved.
//
import Foundation
import Metal
enum KernelError: Error {
case badFunction
case badSize
case textureCreationFailed
}
protocol TerrainGenerator {
var name: String { get }
var needsGPU: Bool { get }
var outTexture: MTLTexture { get }
func updateUniforms()
func encode(in encoder: MTLComputeCommandEncoder)
func render()
}
class Kernel {
class var textureSize: MTLSize {
return MTLSize(width: 512, height: 512, depth: 1)
}
class func buildTexture(device: MTLDevice, size: MTLSize) -> MTLTexture? {
let desc = MTLTextureDescriptor.texture2DDescriptor(pixelFormat: .r32Float, width: size.width, height: size.height, mipmapped: false)
desc.usage = [.shaderRead, .shaderWrite]
let tex = device.makeTexture(descriptor: desc)
return tex
}
let pipeline: MTLComputePipelineState
let textures: [MTLTexture]
let uniformBuffer: MTLBuffer?
var outTexture: MTLTexture {
return textures[textureIndexes.out]
}
private(set) var textureIndexes: (`in`: Int, out: Int) = (in: 0, out: 1)
init(device: MTLDevice, library: MTLLibrary, functionName: String, uniformBuffer: MTLBuffer? = nil) throws {
guard let computeFunction = library.makeFunction(name: functionName) else {
throw KernelError.badFunction
}
self.pipeline = try device.makeComputePipelineState(function: computeFunction)
// Create our input and output textures
var textures = [MTLTexture]()
for i in 0..<2 {
guard let tex = Kernel.buildTexture(device: device, size: type(of: self).textureSize) else {
print("Couldn't create heights texture i=\(i)")
throw KernelError.textureCreationFailed
}
textures.append(tex)
}
self.textures = textures
self.uniformBuffer = uniformBuffer
}
func encode(in encoder: MTLComputeCommandEncoder) {
encoder.setComputePipelineState(pipeline)
encoder.setTexture(textures[textureIndexes.in], index: textureIndexes.in)
encoder.setTexture(textures[textureIndexes.out], index: textureIndexes.out)
encoder.setBuffer(uniformBuffer, offset: 0, index: 0)
encoder.dispatchThreads(type(of: self).textureSize, threadsPerThreadgroup: MTLSize(width: 8, height: 8, depth: 1))
}
}
/// "Compute" zero for every value of the height map.
class ZeroAlgorithm: Kernel, TerrainGenerator {
let name = "Zero"
let needsGPU: Bool = true
init?(device: MTLDevice, library: MTLLibrary) {
do {
try super.init(device: device, library: library, functionName: "zeroKernel")
} catch let e {
print("Couldn't create compute kernel. Error: \(e)")
return nil
}
}
// MARK: Algorithm
func updateUniforms() { }
func render() { }
}
/// Randomly generate heights that are independent of all others.
class RandomAlgorithm: Kernel, TerrainGenerator {
let name = "Random"
let needsGPU: Bool = true
private var uniforms: UnsafeMutablePointer<RandomAlgorithmUniforms>
init?(device: MTLDevice, library: MTLLibrary) {
let bufferSize = (MemoryLayout<RandomAlgorithmUniforms>.stride & ~0xFF) + 0x100;
guard let buffer = device.makeBuffer(length: bufferSize, options: [.storageModeShared]) else {
print("Couldn't create uniform buffer")
return nil
}
uniforms = UnsafeMutableRawPointer(buffer.contents()).bindMemory(to: RandomAlgorithmUniforms.self, capacity:1)
do {
try super.init(device: device, library: library, functionName: "randomKernel", uniformBuffer: buffer)
} catch let e {
print("Couldn't create compute kernel. Error: \(e)")
return nil
}
updateUniforms()
}
func updateUniforms() {
RandomAlgorithmUniforms_refreshRandoms(uniforms)
}
func render() { }
}
/// Implementation of the Diamond-Squares algorithm.
/// - https://en.wikipedia.org/wiki/Diamond-square_algorithm
public class DiamondSquareGenerator: TerrainGenerator {
public struct Point {
let x: Int
let y: Int
init() {
self.init(x: 0, y: 0)
}
init(x: Int, y: Int) {
self.x = x
self.y = y
}
}
public struct Size {
let w: Int
let h: Int
var half: Size {
return Size(w: w / 2, h: h / 2)
}
}
public struct Box {
let origin: Point
let size: Size
var corners: [Point] {
return [northwest, southwest, northeast, northwest]
}
var sideMidpoints: [Point] {
return [north, west, south, east]
}
var north: Point {
return Point(x: origin.x + size.w / 2, y: origin.y)
}
var west: Point {
return Point(x: origin.x, y: origin.y + size.h / 2)
}
var south: Point {
return Point(x: origin.x + size.w / 2, y: origin.y + size.h - 1)
}
var east: Point {
return Point(x: origin.x + size.w - 1, y: origin.y + size.h / 2)
}
var northwest: Point {
return origin
}
var southwest: Point {
return Point(x: origin.x, y: origin.y + size.h - 1)
}
var northeast: Point {
return Point(x: origin.x + size.w - 1, y: origin.y)
}
var southeast: Point {
return Point(x: origin.x + size.w - 1, y: origin.y + size.h - 1)
}
var midpoint: Point {
return Point(x: origin.x + (size.w / 2), y: origin.y + (size.h / 2))
}
var subdivisions: [Box] {
guard size.w > 2 && size.h > 2 else {
return []
}
let halfSize = size.half
let newSize = Size(w: halfSize.w + 1, h: halfSize.h + 1)
return [
Box(origin: origin, size: newSize),
Box(origin: Point(x: origin.x + halfSize.w, y: origin.y), size: newSize),
Box(origin: Point(x: origin.x, y: origin.y + halfSize.h), size: newSize),
Box(origin: Point(x: origin.x + halfSize.w, y: origin.y + halfSize.h), size: newSize)
]
}
func breadthFirstSearch(visit: (Box) -> (Void)) {
var queue = Queue<Box>()
queue.enqueue(item: self)
while let box = queue.dequeue() {
visit(box)
queue.enqueue(items: box.subdivisions)
}
}
}
struct Algorithm {
let grid: Box
private(set) var rng: RandomNumberGenerator
init(grid: Box, rng: RandomNumberGenerator = SystemRandomNumberGenerator()) {
// TODO: Assert log2(w) and log2(h) are integral values.
self.grid = grid
self.rng = rng
}
/// Run the algorithm and return the genreated height map.
func render() -> [Float] {
var heightMap = [Float](repeating: 0, count: grid.size.w * grid.size.h)
// 0. Set the corners to initial values if they haven't been set yet.
for p in grid.corners {
let idx = convert(pointToIndex: p)
heightMap[idx] = Float.random(in: 0...1)
}
grid.breadthFirstSearch { (box: Box) in
// 1. Diamond step. Find the midpoint of the square defined by `box` and set its value.
let midpoint = box.midpoint
let cornerValues = box.corners.map { heightMap[self.convert(pointToIndex: $0)] }
let midpointValue = Float.random(in: 0...1) + self.average(ofPoints: cornerValues)
heightMap[convert(pointToIndex: midpoint)] = midpointValue
// 2. Square step. For each of the side midpoints of this box, compute its value.
for pt in box.sideMidpoints {
let corners = diamondCorners(forPoint: pt, diamondSize: box.size)
let cornerValues = corners.map { heightMap[self.convert(pointToIndex: $0)] }
let ptValue = Float.random(in: 0...1) + self.average(ofPoints: cornerValues)
heightMap[convert(pointToIndex: pt)] = ptValue
}
}
return heightMap
}
/// Find our diamond's corners, wrapping around the grid if needed.
func diamondCorners(forPoint pt: Point, diamondSize: Size) -> [Point] {
let halfSize = diamondSize.half
let n = Point(x: pt.x, y: pt.y - halfSize.h)
let w = Point(x: pt.x - halfSize.w, y: pt.y)
let s = Point(x: pt.x, y: pt.y + halfSize.h)
let e = Point(x: pt.x + halfSize.w, y: pt.y)
return [n, w, s, e].map { (p: Point) -> Point in
if p.x < 0 {
return Point(x: p.x + grid.size.w - 1, y: p.y)
} else if p.x > grid.size.w {
return Point(x: p.x - grid.size.w + 1, y: p.y)
} else if p.y < 0 {
return Point(x: p.x, y: p.y + grid.size.h - 1)
} else if p.y > grid.size.h {
return Point(x: p.x, y: p.y - grid.size.h + 1)
} else {
return p
}
}
}
func average(ofPoints pts: [Float]) -> Float {
let scale: Float = 1.0 / Float(pts.count)
return scale * pts.reduce(0) { return $0 + $1 }
}
func convert(pointToIndex pt: Point) -> Int {
return pt.y * grid.size.w + pt.x
}
}
let name = "Diamond-Square"
let needsGPU: Bool = false
class var textureSize: MTLSize {
// Needs to 2n + 1 on each side.
return MTLSize(width: 513, height: 513, depth: 1)
}
var algorithm: Algorithm
let texture: MTLTexture
let textureSemaphore = DispatchSemaphore(value: 1)
init?(device: MTLDevice) {
let size = DiamondSquareGenerator.textureSize
let desc = MTLTextureDescriptor.texture2DDescriptor(pixelFormat: .r32Float, width: size.width, height: size.height, mipmapped: false)
desc.usage = [.shaderRead, .shaderWrite]
guard let tex = device.makeTexture(descriptor: desc) else {
print("Couldn't create texture for Diamond-Squares algorithm.")
return nil
}
texture = tex
algorithm = Algorithm(grid: Box(origin: Point(), size: Size(w: DiamondSquareGenerator.textureSize.width, h: DiamondSquareGenerator.textureSize.height)))
}
func render() {
let heightMap = algorithm.render()
let region = MTLRegion(origin: MTLOrigin(), size: DiamondSquareGenerator.textureSize)
texture.replace(region: region, mipmapLevel: 0, withBytes: heightMap, bytesPerRow: MemoryLayout<Float>.stride * DiamondSquareGenerator.textureSize.width)
}
// MARK: Algorithm
var outTexture: MTLTexture {
return texture
}
func encode(in encoder: MTLComputeCommandEncoder) {
}
func updateUniforms() {
}
}
extension DiamondSquareGenerator.Point: Equatable {
public static func == (lhs: DiamondSquareGenerator.Point, rhs: DiamondSquareGenerator.Point) -> Bool {
return lhs.x == rhs.x && lhs.y == rhs.y
}
}
extension DiamondSquareGenerator.Point: CustomStringConvertible {
public var description: String {
return "(x: \(x), y: \(y))"
}
}
extension DiamondSquareGenerator.Size: Equatable {
public static func == (lhs: DiamondSquareGenerator.Size, rhs: DiamondSquareGenerator.Size) -> Bool {
return lhs.w == rhs.w && lhs.h == rhs.h
}
}
extension DiamondSquareGenerator.Size: CustomStringConvertible {
public var description: String {
return "(w: \(w), h: \(h))"
}
}
extension DiamondSquareGenerator.Box: Equatable {
public static func == (lhs: DiamondSquareGenerator.Box, rhs: DiamondSquareGenerator.Box) -> Bool {
return lhs.origin == rhs.origin && lhs.size == rhs.size
}
}
/// Implementation of the Circles algorithm.
//class CirclesAlgorithm: Algorithm {
// static let name = "Circles"
//}