terrain/Terrain2/Algorithms/DiamondSquare.swift

298 lines
9.7 KiB
Swift

//
// DiamondSquare.swift
// Terrain2
//
// Created by Eryn Wells on 11/23/18.
// Copyright © 2018 Eryn Wells. All rights reserved.
//
import Foundation
import Metal
import os
/// Implementation of the Diamond-Squares algorithm.
/// - https://en.wikipedia.org/wiki/Diamond-square_algorithm
public class DiamondSquareGenerator: TerrainGenerator {
public struct Point {
var x: Int
var y: Int
init() {
self.init(x: 0, y: 0)
}
init(x: Int, y: Int) {
self.x = x
self.y = y
}
}
public struct Size {
var w: Int
var h: Int
var half: Size {
return Size(w: w / 2, h: h / 2)
}
}
public struct Box {
var origin: Point
var size: Size
var corners: [Point] {
return [northwest, southwest, northeast, northwest]
}
var sideMidpoints: [Point] {
return [north, west, south, east]
}
var north: Point {
return Point(x: origin.x + size.w / 2, y: origin.y)
}
var west: Point {
return Point(x: origin.x, y: origin.y + size.h / 2)
}
var south: Point {
return Point(x: origin.x + size.w / 2, y: origin.y + size.h - 1)
}
var east: Point {
return Point(x: origin.x + size.w - 1, y: origin.y + size.h / 2)
}
var northwest: Point {
return origin
}
var southwest: Point {
return Point(x: origin.x, y: origin.y + size.h - 1)
}
var northeast: Point {
return Point(x: origin.x + size.w - 1, y: origin.y)
}
var southeast: Point {
return Point(x: origin.x + size.w - 1, y: origin.y + size.h - 1)
}
var midpoint: Point {
return Point(x: origin.x + (size.w / 2), y: origin.y + (size.h / 2))
}
var subdivisions: [Box] {
guard size.w > 2 && size.h > 2 else {
return []
}
let halfSize = size.half
let newSize = Size(w: halfSize.w + 1, h: halfSize.h + 1)
return [
Box(origin: origin, size: newSize),
Box(origin: Point(x: origin.x + halfSize.w, y: origin.y), size: newSize),
Box(origin: Point(x: origin.x, y: origin.y + halfSize.h), size: newSize),
Box(origin: Point(x: origin.x + halfSize.w, y: origin.y + halfSize.h), size: newSize)
]
}
func breadthFirstSearch(progress: Progress, visit: (Box) -> (Void)) {
var queue = Queue<Box>()
queue.enqueue(item: self)
progress.totalUnitCount += 1
while let box = queue.dequeue() {
visit(box)
progress.completedUnitCount += 1
let subdivisions = box.subdivisions
queue.enqueue(items: subdivisions)
progress.totalUnitCount += Int64(subdivisions.count)
}
}
}
struct Algorithm {
let grid: Box
var roughness: Float = 1.0 {
didSet {
randomRange = -roughness...roughness
}
}
private var randomRange = Float(0)...Float(1)
init(grid: Box) {
// TODO: Assert log2(w) and log2(h) are integral values.
self.grid = grid
}
/// Run the algorithm and return the genreated height map.
func render(progress: Progress) -> [Float] {
let renderProgress = Progress(totalUnitCount: 1, parent: progress, pendingUnitCount: 1)
os_signpost(.begin, log: Log, name: "DiamondSquare.render")
var heightMap = [Float](repeating: 0, count: grid.size.w * grid.size.h)
// 0. Set the corners to initial values if they haven't been set yet.
for p in grid.corners {
let idx = convert(pointToIndex: p)
heightMap[idx] = Float.random(in: randomRange)
}
renderProgress.completedUnitCount += 1
grid.breadthFirstSearch(progress: renderProgress) { (box: Box) in
// 1. Diamond step. Find the midpoint of the square defined by `box` and set its value.
let midpoint = box.midpoint
let cornerValues = box.corners.map { (pt: Point) -> Float in
let idx = self.convert(pointToIndex: pt)
return heightMap[idx]
}
let midpointValue = Float.random(in: randomRange) + self.average(ofPoints: cornerValues)
heightMap[convert(pointToIndex: midpoint)] = midpointValue
// 2. Square step. For each of the side midpoints of this box, compute its value.
for pt in box.sideMidpoints {
let corners = diamondCorners(forPoint: pt, diamondSize: box.size)
let cornerValues = corners.map { (pt: Point) -> Float in
let idx = self.convert(pointToIndex: pt)
return heightMap[idx]
}
let ptValue = Float.random(in: randomRange) + self.average(ofPoints: cornerValues)
heightMap[convert(pointToIndex: pt)] = ptValue
}
}
os_signpost(.end, log: Log, name: "DiamondSquare.render")
return heightMap
}
/// Find our diamond's corners, wrapping around the grid if needed.
func diamondCorners(forPoint pt: Point, diamondSize: Size) -> [Point] {
let halfSize = diamondSize.half
var corners = [Point(x: pt.x, y: pt.y - halfSize.h),
Point(x: pt.x - halfSize.w, y: pt.y),
Point(x: pt.x, y: pt.y + halfSize.h),
Point(x: pt.x + halfSize.w, y: pt.y)]
for i in 0..<corners.count {
if corners[i].x < 0 {
corners[i].x += grid.size.w - 1
} else if corners[i].x >= grid.size.w {
corners[i].x -= grid.size.w - 1
} else if corners[i].y < 0 {
corners[i].y += grid.size.h - 1
} else if corners[i].y >= grid.size.h {
corners[i].y -= grid.size.h - 1
}
}
return corners
}
func average(ofPoints pts: [Float]) -> Float {
let scale: Float = 1.0 / Float(pts.count)
return scale * pts.reduce(0) { return $0 + $1 }
}
func convert(pointToIndex pt: Point) -> Int {
return pt.y * grid.size.w + pt.x
}
}
let name = "Diamond-Square"
let needsGPU: Bool = false
class var textureSize: MTLSize {
// Needs to 2n + 1 on each side.
return MTLSize(width: 129, height: 129, depth: 1)
}
var roughness: Float = 1.0 {
didSet {
algorithm.roughness = roughness
}
}
var algorithm: Algorithm
let textures: [MTLTexture]
private var activeTexture: Int = 0
init?(device: MTLDevice) {
let size = DiamondSquareGenerator.textureSize
do {
textures = try (0..<2).map { (i: Int) -> MTLTexture in
let desc = MTLTextureDescriptor.texture2DDescriptor(pixelFormat: .r32Float, width: size.width, height: size.height, mipmapped: false)
desc.usage = [.shaderRead, .shaderWrite]
guard let tex = device.makeTexture(descriptor: desc) else {
throw KernelError.textureCreationFailed
}
return tex
}
} catch {
print("Couldn't create texture for Diamond-Squares algorithm.")
return nil
}
algorithm = Algorithm(grid: Box(origin: Point(), size: Size(w: DiamondSquareGenerator.textureSize.width, h: DiamondSquareGenerator.textureSize.height)))
}
func render(progress: Progress) -> [Float] {
let algProgress = Progress(totalUnitCount: 2, parent: progress, pendingUnitCount: 2)
let heights = algorithm.render(progress: algProgress)
algProgress.completedUnitCount += 1
// Swap the active texture to the new one. Copy the height map into the new texture.
let region = MTLRegion(origin: MTLOrigin(), size: DiamondSquareGenerator.textureSize)
let newActiveTexture = (self.activeTexture + 1) % self.textures.count
self.textures[newActiveTexture].replace(region: region, mipmapLevel: 0, withBytes: heights, bytesPerRow: MemoryLayout<Float>.stride * DiamondSquareGenerator.textureSize.width)
self.activeTexture = newActiveTexture
algProgress.completedUnitCount += 1
return heights
}
// MARK: Algorithm
var outTexture: MTLTexture {
return textures[activeTexture]
}
func encode(in encoder: MTLComputeCommandEncoder) {
}
}
extension DiamondSquareGenerator.Point: Equatable {
public static func == (lhs: DiamondSquareGenerator.Point, rhs: DiamondSquareGenerator.Point) -> Bool {
return lhs.x == rhs.x && lhs.y == rhs.y
}
}
extension DiamondSquareGenerator.Point: CustomStringConvertible {
public var description: String {
return "(x: \(x), y: \(y))"
}
}
extension DiamondSquareGenerator.Size: Equatable {
public static func == (lhs: DiamondSquareGenerator.Size, rhs: DiamondSquareGenerator.Size) -> Bool {
return lhs.w == rhs.w && lhs.h == rhs.h
}
}
extension DiamondSquareGenerator.Size: CustomStringConvertible {
public var description: String {
return "(w: \(w), h: \(h))"
}
}
extension DiamondSquareGenerator.Box: Equatable {
public static func == (lhs: DiamondSquareGenerator.Box, rhs: DiamondSquareGenerator.Box) -> Bool {
return lhs.origin == rhs.origin && lhs.size == rhs.size
}
}